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Abstract 

A 17-cell bi-periodic standing wave slot coupled structure 
will be used as accelerating structure for the RaceTrack 
Microtron Eindhoven. The numerical design of the struc- 
ture has been performed with the computer codes SIJPER- 
FISH and MAFIA. Analytical calculations for a bi-periodic 
accelerating structure with full end cells including direct 
coupling are presented. Equations giving the detuning of 
the chain mode frequencies for known individual cell er- 
rors and coupling coefficients are derived. After numerical 
inversion these equations will be used for the final tuning 
of the cavity. 

1 INTRODUCTION 

The accelerating structure of the 10 - 75 MeV RaceTrack 
Microtron Eindhoven (RTME) [l] will consist of a 17-cell 
bi-periodic slot coupled structure terminated with full end 
cells. The numerical design of the cavity has been done 
with the computer codes SUPERFISH and MAFIA. This 
combination of codes is used the same way as described 
by Chang et al. [2]. Table 1 lists some parameters of the 
accelerating structure. 

In literature most analysis is performed on bi-periodic 
accelerating structures terminated with half end cells. 
Theory for this is not well applicable in our case, since 
our structure is terminated with full end cells and more- 
over since it is relatively short. In section 2 the solution 
for the amplitudes and phases of the fields in a bi-periodic 
structure with full cell ends is given. Also the coupled res- 
onator equations are given by means of matrix formulation. 
In section 3 an analytical derivation, including direct cou- 
pling (direct coupling is the second neighbour coupling in a 
bi-periodic structure), of the perturbations in the frequen- 
cies of the modes of a chain of cavities terminated with full 
end cells as a function of the frequencies of t.he individual 
cells is described. In section 4 a simulation of the influ- 
ence of the finite tuning accuracy, losses and drives on the 
T/2-mode vector of the RTME cavity is described. 

2 BI-PERIODIC STRUCTURE WITH 
FULL END CELLS 

An accelerating structure can be represented by a chain 
of coupled resonators, which in turn can be described by 
the coupled resonator equations [3]. The solution of these 
equations yields the amplitudes and phases of the stand- 
ing wave in both accelerating and coupling cells. For an 

Table 1: Accelerating cavity parameters 
frequency 2.998 GHz 
number of accelerating cells 9 
accelerating voltage 5 MV 
peak Efield at surface 0.9 Kilpatrick 
wall losses 700 kW 
transit time factor 0.77 
shunt impedance R,T’ 79.9 MO/m 
unloaded quality factor 17300 
generator-cavity coupling p 1.5 
next neighbour coupling -4.5% 
power source EEV M5125, 

2.2 MW magnetron 

infinitely long chain the general solution is given by 

XZn = A-,jze + A+e-j2n# 
X 2n+1 = 

c-ej(zn+1)4 + c+e-j(2n+lbP 1 (1) 

n=O,l,... where X2,, and Xzn+l are the generalised am- 
plitudes of the accelerating and coupling cells respectively. 
The ratio of the amplitudes of the fields in the accelerating 
and coupling cells, A/C, is given by: 

A- A+ -k,, cos I$ 
c=c+= 

l-$+kk,,cos2$ 
= 

l- $+k,,cos2$ 

-k,,cosr$ ’ 

(2) 
this ratio is not relevant for d; = 7r/2, since the ampli- 
tudes of the fields in the coupling cells is zero for this 
mode. Here w,(w,) is the resonance frequency of the ac- 
celerating (coupling) cells in the st,ructure, k,, represents 
the coupling coefficient, for coupling between accelerating 
and coupling cells and k,,(k,,) the coupling coefficient for 
direct coupling between accelerating (coupling) cells. The 
phase shift 4 per resonator is linked with frequency w by 
the dispersion relation for a doubly periodic chain [3]. 

By terminating the infinitely long chain, boundary con- 
ditions are imposed on the general solutions. From the 
singly periodic chain we know [4] that the solution for a 
chain with full accelerating cells as end cells should be sine- 
like. To obtain this ideal solution the following boundary 
conditions have to be imposed on the generalised ampli- 
tudes (see figure 1 for numbering): 

{ 

x-1 = 0 x(J = -x-z 
xzlv+t = 0 x2N = --X2N+2 

(3) 

After substituton of these conditions in the coupled res- 
onator equations and disregarding drives and losses, the 
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solution is found to be We start with the solution of the q-th mode of the eigen- 

{ 
XL = Asin(2n + I)4 

value problem: 

x:,+1 = Csin(2n+2)4 ’ (4) 
Mfq - XqT2fq = iti, (10) 

with 6 = wj and the mode number q = 0, 1,. ,2&V. X, = l/w% is the eigenvalue belonging to mode frequency 

It is convenient to write the coupled resonator equations We and f’J is the corresponding eigenvector. Define Dq = 

for a chain terminated with full end cells by in matrix form: ,4,T2 and allow perturbations in the accelerating cell res- 

MZ-iIT22=D (5) 

onance frequencies w:(~,~ - - w, + Sw,(z,,) and coupling cell 
resonance frequencies w = wc + 6wcpn+l). These 
perturbations lead to a s lft In the resonance frequencies 

crp+L) 

eigenvectors Pq = Zq + 6fq. q “’ 1, ;;I! + ja j, ; 1, (6) :::‘,:::yy~ =w9+bw9andachangeinthe 

If higher order terms are neglected, the perturbed ma- 

L 1 x2N 1. 0 wo] 

- (2 - L) kc La 0 D” = D’ + bD’ = Dq + ;(6C - SQ), (11) 
9 

k (1-z 2 L kc, 
k with aa k (1c 2 kx km 

wdW,(O) 0 

0 km km (2 - km) 0 

(7) 
EC= 

%~Wc(l) 

and X represents the eigenvalues l/w:. 

,bQ = 2T2, 

0 

M=f 

By using the fact that T is a diagonal matrix, the 
I. ‘.. : %6%(2N) I 

problem is rewritten as an eigenvalue problem with &I = 
(12) 

T-‘MT-’ and i; = 7%: 
6C contains the perturbations of the frequencies of the 
individual cells and SQ the perturbations of the mode fre- 

ii-5 - Xf = 0. (8) 
quencies of the cavity. 

After substitution of eq. 11 in eq. 10, insertion of the 

Matrix A> is symmetric. This implies that the eigenvec- pert,urbed eigenvector fq’ subtraction of the homogeneous 

tors belonging to different eigenvalues for the eigenvalue equation and disregarding the higher order term, we get 

problem with matrix A? are orthogonal. Since thcrc are 
as many different eigenvalues as equations all eigenvertors 

M&9 = 6D’i? $ D’bi?. (13) 

are orthogonal. Moreover the eigenvectors form a complete Thp pf,rturbations of the mode frequencies arp isolated bq 
set. The orthogonality relations are taking the inner product with ?Y: 

(Z9, Z) = 6,, 
(N + 1)(w,2A2 + w;C’) (2, MG9) = (z’, SDV) + (3, D’SP) (14) 

2 (9) 

under the condition that for the n/2-mode the ratio A/C 
Using the symmetry of the matrices M and D9 and the 

is given by A/C = w,/w,. This constraint is allowed as 
homogeneous equation, it follows: 

the ratio was not determined yet in the T/2-mode. The (3, 6Dqy9) = 0. (15) 
Kronecker delta is denoted by 6,,.. 

mdoell mdwll 

(,,;e;J?yYiJJiJ J . . . (iJ$iJLf~~~{;;; 

Figure 1: Schematic drawing of a 2N $ 1 cells long doubly periodic chain with two full accelerating cells as end cells. 

This expression relates the perturbations in the resonance 

3 PERTURBATION CALCULATION frcqucncy of mode q of a structure with the perturbations 

By linear perturbation of the coupled resonator equations, 
in the individual cell resonance frequencies. With eq. 13 

expressions for the frequency shifts of the cavity modes due 
and using the symmetry of T eq. 15 is written as 

to small errors in the resonance frequencies of individual (29, KY) 6W q 
cells can be found. w-4 (rn,Ts)’ (16) 
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I With the assumption that w, N (J, this becomes 

6W -.A= 
w* (N+1)(%2+C’), 

[ 

N 6w 
C,- +)A2 . 2 

n=O 

sm ‘““+z~~~‘)“) + 
( 

N 6w C 

n=O 

‘l?l:I+l)CZSinZ (‘““~,~~: I)~ (17) 

)I 

This expression states that the relative frequency shift of a 
certain mode is equal to the sum of the relative frequency 
shifts in a cell times the stored energy in that cell, nor- 
malised to the total stored energy in the structure in this 
mode. When these equations are numerical inverted, they 
can be helpful for the tuning of an accelerating struc!#ure. 

4 TUNING TOLERANCES 

Tuning an accelerating cavity can be a tedious job, but 
an accelerating structure that is not perfectly tuned will 
generate unwanted phase shifts and will have varying field 
amplitudes in the accelerating cells and fields in the cou- 
pling cells. This means that it is important to make in 
advance an estimation of the permitted tolerances on the 
tuning parameters; SW~(~), ELI,(~), stopband and coupling 
coefficients. 

To investigate the influence of losses, drives and tun- 
ing parameters on the mode vector Zq we start with the 
coupled resonator equations including losses and drives: 

M?"] - X$3 _ jLTzq = 5, 

Q CJq 

(18) 

here y represents the drives 

1 

t 
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Figure 2: Absolute value of the mode vector in the 7r/2- 
mode for the cavity of RTME (w, = 3,000 MHz,Q, = 
10,000, Qc = 2,000, k = -0.05, A: = 8, drive in cell 8, 
6w, = lMHz, bw, = 3MTIz, 6L = I%, stopband = 3 MHz). 

the mode vector Fq in eq. 18 is found by inversion: 

$= &f-T2-jE 

( > 

-1 

w2 
&- 

(I wq 
(211 

Now it is possible to investigate for each mode the separate 
or combined influence of t,he t,uning parameters, drives and 
losses on the mode vector. 

Figure 2 depicts the absolute value of the mode vector in 
the different cells for the x/2-mode for reasonable values 
of achievable tuning accuracies, 6w,(6w,) is the maximum 
value of a random error in the accelerating (coupling) cells, 
6k is the error in the coupling coefficient. The phase 
shifts are not shown since the errors are negligible for the 
accelerating cells, and since the fields in the coupling cells 
are almost 0 their phases are not of interest. 

and the term with j represents the losses. Matrix hf is 
now given by 

I 

2 ko,l ko,z 0 ill 

ko,l 2 h,z h,3 
ko,z kl,z 2 h,3 

’ PI 

1. . 0 km-z,zN h-1,n’ 21 
(20) [31 

where the indices indicate between which cells the cou- 
pling takes place. Matrix T is given by T = F,,w,! 71, ?n = 
0, 1, . ,2N, w, is the resonance frequency of cell 7~. Fi- [41 
nally the matrix L is given by L = 6,,/&,, Q,, is the 
quality factor of cell n. 

To find a solution for the mode vector Zq first the ho- 
mogeneous part of eq. 18 without losses is solved. The 
solution of this eigenvalue problem gives the UJ~. If WC 
assume that the influence of losses and drives on the res- 
onance frequency is negligible (large Qn), the solution of 
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