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Abstract 

The methods of instabilities theory are applied to the 
system consisting of superconducting cavity, excited by rf 
generator and cooled by liquid helium. Three dimensional heat 
conduction equation as well as cavity excitation equation are 
used to derive the set of relationships, describing evolution of 
small perturbations in the system, being in steady state. Linear 
approximation is used as the first step of the analysis of 
thermal interaction of rf field with superconductor through the 
mechanism of temperature dependence of surface resistance. 
The expressions or the equations for the instability threshold 
have been obtain for some particular cases. 

1. INTR~DuC-~I~N 

Great efforts are undertaken in the field of rf 
superconducting science and technology to increase 
accelerating gradients in superconducting cavities to be used 
in new generation of accelerators and colliders. Among the 
other problems to be solved on the way to high gradients [l] 
(field emission, thermal break down, induced by local defects) 
the one of thermal stability being understood in general sense 
as an ability to damp any possible in the system thermal 
perturbation seems to be attractive for exploration too. 
Temperature dependence of BCS losses results in the feed 
back in the system rf generator - superconducting cavity - 
cooling M. This feed back may be the main factor to 
determine the processes in the system at high field level when 
the dissipated rf power becomes appreciable to induce an 
instabiIiiy resulting in thermal break down [2]. The problem 
under consideration is complicated significantly by non linear 
character of field surf& interaction; the latter, in turn, may 
stabilise the system, forming new steady state. 

The attempt of generalisation of the results that had been 
obtained in [2] is undertaken in present paper. The analysis 
below has the objective to cover the cases that can be treated 
analyticalIy and thus to understand the main tiatures of 
instabilities. Linear approximation is used to simplif?j~ the 
problem for the most general consideration. 

2. THE EQUATIONS OF HEAT - RF FIELD 
INTERACTION 

We shall consider the cavity of cylindrical form; l, R and 
L being the wall thickness, the cavity radius and its length 
respectively. It is assumed that the cavity is cooled by liquid 
helium outside. The mode TM010 is assumed to be excited 
by external rfgenerator as well. For simplicity, we exclude the 
end plates from thermal model. Thus, we have heat 
conduction equations 

: 1 aT+_Lalr+C 
r dr r2 ad dz2 

1 (1) 

where r, p and z are the cylindrical co-ordinates, 
Tandy denote the cavity wall temperature and temperature 
conductivity [3], i is time, and cavity excitation equation 

$+{$-i**)H=a& 

Here, H is the complex amplitude of magnetic field in the 
cavity, CUE and Q are the cavity frequency and its quality 
factor, Pg is the power of rf generator and a is the constant, 

determined by coupling conditions, A~I = cu- mug, a, being 
the generator frequency. We shall assume ha, = 0 throughout 
this work. 

The equations (1) and (2) should be complemented by 
boundary conditions: 

aT 
A-=a(T-T&) at z=O 

az 

,$$=-a(T-TII,) at z= L 

a% = -P(T,H) = -~R,(T)H: 
(31 

at r=R 

dT 
Ax=-a(T-TH,) at r=R+l, 

where a=llR,, Ri, is Kapitza resistance 141, 
R,, H, and P are the cavity surf&e resistance, surface 
magnetic field and rf power per unit area, dissipated on inner 
cavity surface. We shall assume, that 
T(r’,i) = T,(F)+ 9(3,t), H,(t)=Hf +h(r), where index 
“si” denotes the system steady state, also assumed to exist, 
and 9(7,1) as well as h(t) are small deviations from the 
steady state values. After the appropriate substitutions we 
have 

a9 

!- 

a29+ I as I i a29+a29 
at=’ ax2 -4 R ax R2 ap2 az2 

I LJds+=o (5) 
s 

Integration in (5) is performed over cylindrical cavity surf&e 
S; it is assumed, that i-J, = coast on this surface. Q. and Q1 
are the cavity Q-value and the external Q-value respectively. 
We consider the case when rf power of the external rf 
generator is time independent as weIl as the cavity is tuned to 
the resonance. 

The boundary conditions for small perturbations look like 
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F-P(L+a 1 )/l-c AU ~2g;-+Z!L 
dT 

3--Rfl,h at x=0 

at x=1 

a9 
AT=-a9 at z=L. 

dZ 

where x=r-R. We assume that rwR in the cavity wall. 
Our objective is the study of various particular cases of the 
development of smaU temperature perturbations in the course 
of time. 

3. ABSOLUTE INSTABILITY 

This particular case corresponds to the solution 
9 = exp(kt) with real part of k Rek > 0, 9 being the same 
for any point on the cavity surface. Such a case may be 
realised in the infinity cavity L = a3, appropriate increment (or 
decrement) can be obtained from the equations, written above, 
d one put d2 f 6’(D2 = d* i Bz* = 0. We shall also assume 
that 1 -cc R. It follows from the analysis [2], that k is the 
solution of the equation 

k2 

dP 
Aa(;l+al)--0, 

dT 

where rTf is the time constant of the loaded cavity and 

dP Qo-Ql af' Jz!&T;~, -=-- 
dT Qo+Q, a~ 00 

Depending on relationship between thermal time constant 
~~ = 1* f x and rf field time constant srf=2Q/a, the 

condition of instability varies from 
dP UA 
->------ 
dT A+al 

(9) 

for ~ti << rr (rf field follows the change in the surface 

resistance without any delay) to 
ap ail ->- 
8T A+al 

(10) 
for the other extreme case rfl>> 7T (the regime of constant 

rf field). Fig.1 Illustrates the determination of the operating 
point location for the superconducting cavity, cooled by 
liquid helium and excited by rf generator. The straight line 
represents the dependence of inner surface temperature on 
specific rf power dissipated on it. Its intersection with the 
cmve P = P(T), originating from the dependence of cavity Q- 
value on the inner cavity surface temperature determines the 
location of operating point. For the case rti << rT the points 

marked as 1,3 and 4 are stable, while the point marked as 2 is 
unstable. 
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Fig I. The determhation of the operating point location. 

4. TWO DIMENSIONAL CASE 

Letusassume,that r~>>7T=121~,bClffhereisnot 

any assumption concerning the relationship between rftime 
constant ant temporal characteristic of thermal process in 2 
direction For the analysis of such a case the following system 
might be used: 

a9 l2 a29 i2 a29 ..--.-=-- 
a7 ~2a$+;;Z.q+ 

(11) 

--___ 
I 

9ds = 0 (12) 

s 

Here, v=zlL, ~=fx/l~ are normalised coordinate and 
time respectively. The appropriate boundary conditions are: 

a9 UL -=Y at v=” a 
as --fig & v=l 
G- a 

Finding out the solution of (11)-(13) in the form 

(13) 

9= m$WF;(rl,q?) (14) 

one arrives at the equation 

l2 d2F 12 aZF --+---.-+[i($.-a)-k)J= 
L2 a$ ~~ ap2 

F ( v> ddvdqr, 

(15) 

where ~=l~wl2xQ. The solution of (15) satisfying the 
boundary conditicms (13) is 
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F(q,p)= sins~+~coss~ ( 
SilVlg, 

1-i I cosnq 

where n + 0 is integer, while s is a root of the equation -=-Z!$ at v=l a9 

s;l aL 
cots= ---. 

2aL 2sA 

(16) 

The minimum value of s lies in the intend (0,~). 
As it follows from (15) and also reflected in formulae (16) 

and (17), the temperature perturbations of sine type in azimuth 
direction do not result rf field perturbation (integral in (15) is 
equal to zero for such perturbations) and evolve at the 
c&tad level of rf field h 
place, if 

dP 
> a+g!A2 

-2F L.2 

where R* = 2 +($n)*. 

account the d&tribution of 
the cavity surfhce results 
threshold. 

the cavity. The instability takes 

(18) 

One can see that taking into 

temperature perturbations along 
in increase of the instability 

For the symmetrical temperature perturbations (n = 0) the 
increment of the instability is found as the minimum root of 
the equation: 

2 
[ 

R2(c22 -A)-+4 
I 

cosCz+P$A+ 

*[2a+(n2-1)(~-*2~)]Nln=o, 

where 

Q2 = $-[;(.$-a)-&] 

A=L%uaP 1 --- 
xAQo 8T k+K 

(20) 

The condition Rek = 0 corresponds to the instability 
threshold. After sub&tution Rek = 0 in (19) one has the 

system of two equations relative $& and Imk, which 

solution determines the instability threshold 

5. TREE DIMENSIONAL THERMAL PERTURBATIONS 

The solution has been found for the case , corresponding 
to large rf field time constant when one can neglect the field 
change in the cavity. It follows from heat conduction equation 

a9 a29+ 1 a9 I l2 a29+12 a29 -=- 
8~ as2 R 84 R2 BP2 L2 Bq2’ 

01) 

where x = 4 I, and from the appropriate boundarv conditions 
a9 al -zc- 9 at n=O 

a9 -=-i.$$ at <=O 
a< 

(22) 

$=-f&l at 5~1 

that the instability threshold is determined by the expression 

I2 al 
ap A~‘~+I_ ->- 
aT 1 l+$ 

(23) 

where s is the first root of the equation (17). The solution for 
the most general case, timmqxmding to the boundary 
conditions (6) has not been found so far. 

6. CONCLUSION 

Themal interaction of surface resistance with rf field 
through the mechanism of temperature dependence of BCS 
losses of superconductor may be one of the dominating 
processes in high gradient superconducting cavities. J&ear 
a~o~ti~thathasbeenusedinthispapertoacpiorethe 
main features of the instabilities development may be 
considered only as the tirst step of investigation of the 
processes through the mechanism mentioned. High gradient 
superconducting cavities are not the only object fa the 
problem under discussion. The method developed might be 
used for the analysis of the microwave devices on the basis of 
high temperature superconductora as well 
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