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Abstract

The methods of instabilities theory are applied to the
systern consisting of superconducting cavity, excited by 1f
generator and cooled by liquid helium. Three dimensional heat
conduction equation as well as cavity excitation equation are
used to derive the set of relationships, describing evolution of
small perturbations in the system, being in steady state. Linear
approximation is used as the first step of the analysis of
thermal interaction of 1f field with superconductor through the
mechanism of temperature dependence of surface resistance.
The expressions or the equations for the instability threshold
have been obtain for some particular cases.

1. INTRODUCTION

Great efforts are undertaken in the field of of
superconducting science and technology to increase
accelerating gradients in superconducting cavities to be used
in new generation of accelerators and colliders. Among the
other problems to be solved on the way to high gradients [1]
(field emission, thermal break down, induced by local defects)
the one of thermal stability being understood in general sense
as an ability to damp any possible in the system thermal
perturbation seems to be attractive for exploration too.
Temperature dependence of BCS losses results in the feed
back in the system rf generator - superconducting cavity -
cooling bath. This feed back may be the main factor to
determine the processes in the system at high field level when
the dissipated rf power becomes appreciable to induce an
instability resulting in thermal break down [2]. The problem
under consideration is complicated significantly by non linear
character of field surface interaction; the latter, in tum, may
stabilise the system, forming new steady state.

The attempt of generalisation of the results that had been
obtained in [2] is undertaken in present paper. The analysis
below has the objective to cover the cases that can be treated
analytically and thus to understand the main features of
nstabilities. Linear approximation is used to simplify the
problem for the most general consideration.

2. THE EQUATIONS OF HEAT - RF FIELD
INTERACTION

We shall consider the cavity of cylindrical form; 1, R and
L being the wall thickness, the cavity radius and its length
1espectively. It is assumed that the cavity is cooled by liquid
hebum outside. The mode TMgy( is assumed to be excited
by external 1f generator as well. For simplicity, we exclude the
end plates from thermal model. Thus, we have heat
conduction equations
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where r, @ and z are the cylindncal co-ordinates,
Tandy denote the cavity wall temperature and temperature
conductivity [3], 7 is time, and cavity excitation equation
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Here, H is the complex amplitude of magnetic field in the
cavity, ®gandQ are the cavity frequency and its quality
factor, P, is the power of rf generator and a is the constant,
determined by coupling conditions, Aw= @~ ®, ® being
the generator frequency. We shall assume Aw =0 throughout
this work.

The equations (1) and (2) should be complemented by
boundary conditions:
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where a=1/Ry Ry is Kapitza resistance [4],

R.,H,and P are the cavity surface resistance, surface
magnetic field and rf power per unit area, dissipated on inner
cavity surface. We shall assume, that
TF ) =Ta (F)+ F,1), Hy(£)=HT +h(r), where index
"st" denotes the system steady state, also assumed to exist,
and 8(7.t) as well as h(r) are small deviations from the

steady state values. After the appropriate substitutions we
have
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Integration in (5) is performed over cylindrical cavity surface
S; it is assurned, that H, = const on this surface. Oy and O
are the cavity Q-value and the external Q-value respectively.
We consider the case when 1f power of the external rf
generator is time independent as well as the cavity is tuned to
the resonance.

The boundary conditions for small perturbations look like
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where x=r—-R. We assume that r~ R in the cavity wall
Our objective is the study of various particular cases of the
development of small temperature perturbations in the course
of time.

3. ABSOLUTE INSTABILITY

This particular case corresponds to the solution
9= exp(kt) with real part of & Rek >0, 9 being the same
for any point on the cavity surface. Such a case may be
realised in the infinity cavity L = o, appropriate increment (or
decrement) can be obtained from the equations, written above,
if one put 6%/ 8¢? = 5%/ 5z* =0. We shall also assume
that / << R. It follows from the analysis [2], that % is the
solution of the equation
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Depending on relationship between thermal time constant
TTZIZ/Z and 1f field time constant 7, =20/ the
condition of instability varies from
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for 1,<< 1y (if field follows the change in the surface
resistance without any delay) to
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for the other extreme case r,, >> 77 (the regime of constant
rf field). Fig.1 [ustrates the determination of the operating
point location for the superconducting cavity, cooled by
liquid helium and excited by rf generator. The straight line
represents the dependence of inner surface temperature on
specific rf power dissipated on it. Its intersection with the
curve P = P(T), originating from the dependence of cavity Q-
value on the inner cavity surface temperature determines the
location of operating point. For the case 7,, << 7 the points
marked as 1,3 and 4 are stable, while the point marked as 2 is
unstable.
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Figl. The determination of the operating point location.

4. TWO DIMENSIONAL CASE

Let us assume, that 7,r >> 77 =1%/z , but there is not

any assumption concerming the relationship between rf time
constant ant temporal characteristic of thermal process in z
direction . For the analysis of such a case the following system
might be used:

88 1 2t 1I* 2%9

(n
1(1,, 3R i
i e oal9+ LR H =0,
/1{2 s 7ar ‘ZJ AR

Bh Izm( 1 1 )
| —+ — 1A
dr 2x Qe O

Here, n=z/L, t=1tyx/1* are normalised coordinate and

time respectively. The appropriate boundary conditions are:
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Finding out the solution of (11)-(13) in the form
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one arrives at the equation
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where x=/2w/2yQ. The solution of (15) satisfying the
boundary conditions (13) is

2081



sin
F(np= {sinsm —ficosmj{ mp} (16)
aL cosng
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The minimum value of s lies in the interval (0, z).

As it follows from (15) and also reflected in formulae (16)
and (17), the temperature perturbations of sine type in azimuth
direction do not result rf field perturbation (integral in (15) is
equal to zero for such perturbations) and evolve at the
constant level of rf field in the cavity. The instability takes
place, if
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where szf+(%n)2. One can see that taking into

account the distribution of temperature perturbations along
the cavity surface results in increase of the instability
threshold.

For the symmetrical temperature perturbations (n = 0) the
increment of the instability is found as the minimum root of
the equation:
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The condition Rek=0 cormesponds to the instability
threshold. After substitution Rek =0 in (19) one has the

system of two equations relative %‘;- and Imk, which

solution determines the instability threshold.

5. TREE DIMENSIONAL THERMAL PERTURBATIONS

The solution has been found for the case , corresponding
to large 1f field time constant, when one can neglect the field
change in the cavity. It follows from heat conduction equation

39 _2o*8 158 1P 3*s I*a's

2= AN 21
dr gE* R I R? gp* 1! 9n? @v

where x = &1, and from the appropriate boundary conditions
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that the instability threshold is determined by the expression
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where s is the first root of the equation (17). The solution for
the most general case, comresponding to the boundary
conditions (6) has not been found so far.

6. CONCLUSION

Thermal interaction of surface resistance with rf field
through the mechanism of temperature dependence of BCS
losses of superconductor may be one of the dominating
processes in high gradient superconducting cavities. Linear
approximation that has been used in this paper to explore the
main features of the instabilities development may be
considered only as the first step of investigation of the
processes through the mechanism mentioned. High gradient
superconducting cavities are not the only object for the
problem under discussion. The method developed might be
used for the analysis of the microwave devices on the basis of

high temperature superconductors as well.
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