
A Complete Data Structure for the High Level Software of ELETTRA 

Mark Plesko 
Sincrotrone Trieste 

Padriciano 99, I-34012 TRIESTE 
e-mail: pleskc@elettra.trieste.it 

Abstract: 

ELETTRA is a third generation light source at an electron 
beam energy of 1.5 to 2 GeV. For commissioning and 
operation a multitude of high level applications had to be 
prepared, preferably not depending on any details of the control 
system or parameters which might change during time. The 
unique data structure which is used in all applications, the 
underlying file structure which contains all necessary data 
unseen by the application programmers and the set of utility 
routines which transparently access the control system are 
presented in this paper. The data structure contains all data 
which describe the transfer line and storage ring from the 
machine physics point of view and in addition contains all 
necessary references to the control system in order to access 
single and multiple controlled points. In this way it greatly 
simplifies the development of applications. The content of the 
structure is not specific to ELETTRA, since it is generated 
dynamically at run-time from several text-only editable data 
files. Due to this generality, it can be easily ported to any 
accelerator complex. 

I. INTRODUCTION 

The third generation light source ELETTRA [l] consists of 
a linear accelerator, a storage ring and a 10Om long transfer 
line between them. Both the transfer line and the storage ring 
are attached to a control system, which has been developed in- 
house [21. 

Modern accelerator control systems like the one of 
ELECTRA allow digital access to practically all points of the 
accelerator. Most of the machine physics related tasks that 
were previously done manually and analysed off-line can now 
be automated via software which has direct access to the 
controlled points through the control system. The software 
which performs these tasks is generally called high level 
software (HLS). The list of typical HLS applications includes 
orbit correction, modelling, measurement of Twiss parameters 
and machine monitoring. The HLS applications written for 
ELECTRA are described in a separate contribution [3]. 

For the HLS of ELETTRA a special machine physics 
oriented data structure was developed for the following reasons: 
l the HLS was authored by machine physicists who have 

little knowledge of the control system details; 
. most of the HLS operates on machine physics variables 

which have to be readily available to the programmer; 
l much of the constant data necessary for the HLS is not 

provided by the control system; 

l the individual HLS programs should not contain any 
explicit reference to control variables; 

l the actual control system parameters and procedure calls 
must be hidden from the HLS programmer in a transparent 
way; 

= the HLS should be maximally flexible in case of hardware 
changes, even to the point of being easily portable to other 
accelerators. 
The following section describes the main aspects of the 

data structure in detail. 

II. THE HIGH LEVEL DATA STRUCTURE 

The data structure was developed with the following goals 
in mind: 

allow management of the constant data from one single 
source in order to quickly respond to hardware changes; 
keep control system related data separate from machine 
physics related data; 
design the structure as general as possible, ready for later 
requests and for use on other accelerators; 
provide all relevant machine physics parameters readily in 
the data structure or on a function call; 
create the data structure dynamically whenever the HLS 
program starts making it thus completely independent of the 
hardware platform; 
provide general modelling tools and the necessary data for 
each HLS application; 
channel all actions to/from the hardware through one routine 
which can be updated to any control system changes without 
any modification of the HLS; 
force HLS programmers to a standardised approach thus 
simplifying maintenance of the HLS. 
All the requirements led to the design of the three ^. 

components of the data structure: the fixed data files, the 
run-time data structure and the utility routines. The 
data files contain the calibration data and other fixed parameters 
of the accelerator elements. The run-time data structure keeps 
these fixed data and other data that is read in from the control 
system and converted to machine physics parameters, such that 
it is easily accessed by the HLS program. The utility routines 
are divided into three layers (see figure 1). The lowest layer is 
communicating with the control system and is not directly 
accessed by the HLS. The middle layer provides generic 
routines to access single components or groups of them and 
store obtained data in the run-time data structure. The 
uppermost layer operates only on machine physics variables 
and provides modclling tools. The HLS application is written 
on top of these layers. 

1773 



data flow 
High Level Software Application Program 

Machine Physics (R,k,Q,...) Machine Physics (R,k,Q,...) 4 4 + high1 level data + high1 level data 
-- - 7-- 

con >kj 
(model tunes, (model tunes, 

matrices, etc.) matrices, etc.) 

ccxxvetionroties(k-A) _ 

lad b;et optic: 1 

machine data machine data 
(magnet (magnet 

- 
-ead beam position, set optics,... - 

~~~ 7 
L. (... current, etc.) current, etc.) 

call control system routines call control system routines 
control data control data 

I I 
+ (computer + (computer Y 

HLS utility routines HLS utility routines Run-time data structure Run-time data structure 

Figure 1: The components of the HLS data structure in relation to a HLS application. Figure 1: The components of the HLS data structure in relation to a HLS application. 

function call function call 

HLS fixed data files HLS fixed data files 

A. The Structure of the High Level Data Files 

The high level software (HLS) files contain the constant 
parameters that describe the ELETTRA transfer line and 
storage ring from the machine physics point of view. The data 
in the files is read by an initialisation routine, which must be 
called by the application program. The routine creates the run- 
time data structure providing access to all the data from within 
application programs. 

The files for the HLS are the Calibration File, the 
Parameter File, the Access File and the Structure File. The 
Calibration File contains data obtained from the calibration of 
elements, mainly magnetic elements (bend, quad, sextupole, 
ID, corrector, etc.) but may contain calibration data for any 
type of equipment. The Parameter File contains fixed 
parameters that describe non-changing properties of elements, 
like length, lower and upper limits of the changing properties, 
etc. The Access File contains information about the control 
system addresses, like name of equipment, control computer 
host and port of control routines and references to relevant 
records in the Parameter and Calibration File. Finally, the 
Structure File represents the logical structure of the transfer 
line or the storage ring, with their elements listed according to 
their position in the structure. For each element, there is one 
record containing the name and the type of the element and 
references to the relevant Access and Calibration File records. 

The Calibration, the Parameter and the Access File contain 
data of all elements at ELETTRA and are therefore unique. The 
structure file appears twice - there is one for the transfer line 
and one for the storage ring. 

The way the files are related and read from the application 
programs is shown in figure 2. The Calibration, the Parameter 
and the Access File are direct access files. The individual 
records are selected via keywords. Usually, the Structure File 

is read - via the initialisation routine - sequentially, one record 
after the other, in this case actually line by line, as each line 
contains information about one element and thus corresponds 
to a record. The Structure File records contain references to 
records of the Access File and to records of the Calibration 
File. The Access File itself may contain further references to 
the Parameter File and Calibration File records. In special 
cases (RF, tune measurement, etc.), where the equipment is 
not related to a specific point in the structure and hence does 
not have a record in the Structure File, the application 
program reads the Access File directly. 

application programs 

Figure 2: The relation among the data files and the 
application programs. 

B. The Run-Time Data Structure 

The high level software (HLS) run-time data structure is a 
global data structure implemented in the language C, which 
contains all important parameters that describe the ELETTRA 
transfer line and storage ring from the machine physics point 
of view. Its hierarchical structure provides a logical and 

1774 



efficient access to all the data from within application 
programs. 

The run-time data structure is based on a complex tree 
structure with many branches and back-references. It consists 
of a multitude of data records declared in C as structs and 
references to and among them declared as pointers. There are 
several groups of pointers which allow different methods of 
access to the data records, depending on the requirements. 

Each element in the line (transfer line or storage ring) has a 
corresponding general-record, which contains general 
data about this element, as well as a corresponding specific 
record, which contains data depending on the type of the 
element. The specific records are drift-record for drifts, 
magnet-record for bends, quads and sextupoles, etc. The 
data which is relevant to several elements, such as current of a 
power supply which drives several magnets, is stored in the 
family-record. The records contain all fixed data that 
describes an clement and the variable data that has been 
acquired from the equipment through the control system. 

To each element in the structure there is a corresponding 
3x3 horizontal and vertical transfer matrix and a 
twiss-record, which contains the Twiss functions beta 
and alpha, the phase and the dispersion and its derivative in 
both planes at the position of the element. The list of records 
includes also the access-record containing control 
system related data from the access file, the 
parameter-record which is read from the parameter file 
and others. 

Access to records is provided via pointers. One array of 
pointers is pointing to each element’s general-record, 
ordered according to the positions of the elements in the 
structure file. Another access to elements is possible through 
the specif?c pointers, which point to specific records, declared 
for each type. Records themselves contain various pointers, 
allowing access of data through several levels of the data 
hierarchy. Several records may have pointers to a record with 
common data. Pointer links are bi-directional where this is 
useful for the programmers. 

C. The High Level Utility Routines 

Actions which are common to many programs have been 
gathered in the set of utility routines. They can be divided into 
two groups: machine physics calculations and actions on the 
machine. The routines which perform actions on the machine 
do not communicate with the control system directly in order 
to keep the explicit references to the control system at a 
minimum. Instead they register the individual actions via the 
run-time data structure and call a special routine which handles 
all control system specific tasks. 

Thus there are three layers of utility routines (see figure l), 
two of which are accessible by the application programmer: 
the control system layer, the machine action layer and the 
machine physics layer. 

The control system layer has been added only to allow 
transparent access to the control system via one well defined 
point. The advantage is that individual programmers do not 

even have to care of the explicit implementation of the control 
system. The control system had been developed in parallel and 
all changes could be easily added to the routines of the control 
system layer without changing any line of HLS code. As a 
side product, it was easy to replace the control system layer 
with a machine simulation program in order to test each 
application before releasing it for use on the real machine [33. 

The machine action layer contains the most routines. It 
includes routines which read/set one single power supply 
current, switch on magnets in a pre-defined way, routines 
which act on all power supplies of a given type, routines 
which close or open the scraper, read the current and calculate 
the lifetime, read the current state of the machine into the run- 
time data structure, save the run-time data-structure to a 
machine file, etc. The input and output of these routines do 
not include any explicit reference to the actual control system. 

A set of conversion routines converts the machine 
parameters like magnet currents, insertion device gaps, etc. to 
machine physics parameters like quadrupole strengths, ID 
strengths and vice versa. The machine physics parameters are 
being acted upon by machine physics routines, most notably 
the routine update-t wi s s , which calculates the transfer 
matrices and the linear model of the machine in one step. For 
a HLS program to use the model of the actual state, all it 
takes is a call to the routine input-all which sequentially 
reads all magnets, converts the currents into strengths and 
finally calls update-twiss. 

III. CONCLUSIONS 

The high level software (HLS) data structure contains all 
necessary items for machine physicists to quickly prepare HLS 
applications. The usefulness of the data structure became 
evident by the success of the HLS which was developed in a 
short time and proved to be very stable. The run-time data 
structure and the utility routines are generally usable on any 
accelerator. Thus the HLS written for ELETTRA can easily be 
ported to any other machine. 

IV. ACKNOWLEDGEMENTS 

The author thanks the following persons for their 
contributions: C.J. Bocchetta wrote the basic version of the 
control system communication routine, F. Iazzourene provided 
the data for the data files, R. Nagaoka wrote the basic version 
of update-twiss and L. Tosi wrote the conversion and linear 
optics routines for insertion devices. Fruitful discussions were 
held also with E. Karantzoulis, M. Lonza, R. Richter, C. 
Scafuri and A. Wrulich. 

V. REFERENCES 

[I] ELECTRA Conceptual Design Report, Sincrotrone Trieste, 
April 1989. 

[2] D.Bulfone, Status and Prospects of the ELETTRA Control 
System, Proc. ICALEPS 93. Berlin 93. 

[3] M.Plesko et. al, The High Level Software of ELECTRA. these 
Proceedings. 

1775 


