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Abstract. 
Small electron bunches passing through laser driven 

interference fringes can be diagnosed thanks to Compton 
scattering signals. It is shown that the amount of scattered 
light is simply related to the spatial Fourier transform of the 
transverse particle density distribution. Both real and 
imaginary parts of the Fourier transform can be recorded 
through a discrete scanning of the bunches across the 
interference pattern combined with variable dark fringe 
spacing. Thus, the even and odd parts of the profile of 
bunches whose size compares with or is slightly smaller than 
the optical wavelength can be reconstructed. The size of 
bunches transversally much smaller than the optical 
wavelength can be evaluated by scanning across the fringes 
while varying the optical intensity. 

1. INTRODUCTION. 
Recently, T. Shintake[l] proposed a new and attractive 

scheme to monitor the small transverse size (nanometer) 
electron bunches with rectangular cross-section required for 
future linear colliders [2]: an ultra relativistic electron bunch 
is passed through the plane of optical interference fringes. 
These are of the type usually set up in laser velocimetry [3]. 
The photons participating in the interference process undergo 
Compton scattering, giving birth to high energy quanta 
propagating almost colinearly with the incident electrons. 
Thanks to a scan of the electrons across the fringes, the 
scattered signal is modulated. An evaluation of the transverse 
size of the bunch can be inferred from the modulation depth. 
In the case of a gaussian beam, the accessible characteristic 
width is much smaller than the laser wavelength. 

2. SCATTERED SIGNAL ANALYSIS. 
The geometry of the interferometric system is shown on 

figure la: a laser beam with wavelength h is separated in 
such a way that the two beams recombine symetrically at the 
end of equal optical pathes. Denoting by 0 the angle between 
laser beams in the interference region, the dark fringe interval 

is d= LO , with the wavenumber: K = - = - sin- . 2n: 4rr: 0 
2 sin(f312) d ho 2 

Foreseen bunch would contain lOlo particles. Their transverse 
size could be as small as 10 nm. The Compton process leading 
to the recorded signal is thoroughly described in [l]. It is 
Fhown that high counting rates can be expected using a 
moderate laser power (20 MW. in pulsed regime), a value 
accessible by many laser systems with optical wavelength h 
in the range 250-1000 nm. 

As far as the bunch encounter with the photons is 
involved, the signal results from the superposition of the 
electron density profile to the light intensity in the fringe 
pattern (figure 1 b). 
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Figure 1. 

Assume: i) the ultrarelativistic beam whose Lorentz facto1 
is ye, has a rectangular cross-section with the y coordinate 
perpendicular to the direction of the fringes; ii) the beam is 
initially centered in the middle of the central bright fringe, iii> 
along the x direction, the fringe brightness is uniform and al 
any y, the electron distribution is the same, iv) both IaseI 
beams are linearly polarized with electric field in the z 
direction. The signal then reads 

Q-1) S = H( yc, h,) 

r 

14~) UY) dy 1 
-cc 

where I, = J, f(y) is the electron transverse flux distribution in 

the y direction, normalized in such a way that 
r 

Q)dy = 1 > 
-co 

IV(y) is the light intensity locally in the fringe pattern, and 
H(y,, ho) contains all the relevant information associated with 
the kinematics of Compton scattering and the geometry of the 
apparatus. Actually, the integral in (2-l), is bounded at some 
maximum value ymax. Since f(y) decreases rapidly to zero at 
some value smaller than a few fringe intervals, the integral 
can be safely extended up to infinity. 

The light intensity distribution IV(y) in the fringe pattern 
depends upon the beam polarization. For a linear polarization 
with the electric field along the z axis, the fringe contrast is 
100%. When scanning is used, the interference pattern is 
displaced by an amount q in the y direction with respect to the 
bunch center. The intensity IV is accordingly 

(2-2) IV=Iocos2{7c[y-#j/d), 
where the exact time dependance q(t) may be ignored. 
Consequently, setting 

V-3) So = H( ye.ho) J,Io/2 , 
and 

-CG 
(2-4) G(K) = 

j 
fly) COSKy dy , F(K) = 

r 
fly) sinxy dy , 

-co -cc 
and rearranging the formulas , the signal is 
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COS$(l’-‘Q)dy] =%I 1 icos~j~@y) cos?dy +sinF\Iqy) sin?dy 

= SO[ 1 + G(K) cosq + F(K) sinq] . 
G(K) and F(K) appear as 2~ times the real and the imaginary part respectively, of the spatial Fourier transform of f(y). 

3. PROBING THE TRANSVERSE STRUCTURE OF 
ELECTRON “MICROBUNCHES”. 

Suppose G(K) and F(K) are recorded for a suitable range of 
the variable K. Then, applying an inverse Fourier transform: 
- to the former, restitutes the even part of f(y) 
- to the latter, the odd part. 

Thus, the electron density distribution in the y direction 
can in principle, be completely determined after the 
knowledge of G(K) and F(K). The best sensitivity is expected 
from a discrete scan: changing the integer p step by step, 
- TJ = 0 + p+ yields G(K) = [S,, (Kc) - ShD (~)]42&) ; 

- rl = $ + p$ = ho 
4 . “I 

8sm2 + p ho 4sm2 gives F(K) through 
4 . “1 

the same formula. 
The maximum of K is 47clho corresponding to sin(W2) = 1. 

Let the sampling interval be AK = 4~/(Nb). Consequently 
Ay = l/(N AK) = ho/4n independant of N. This value is the 
resolution limit of the Fourier analysis. Then, the useful range 
in wavelength for a precise probing of the bunch structure is: 

(3- 1) 7caf4 I 310 I 7Ca. 
The size a should compare with the wavelength i.e. be in the 
micrometer range (“microbunches”). The high resolution 
situation for the distribution 

(3-2) f(y) = f(O)( e- yJia4 + p y e- yz’a2) , 
where ~1 is a small coefficient, is displayed on figure 2 
together with the corresponding sampled signals (16 channels) 
associated with both G(K) and F(K). K is given equally spaced 
value in the interval 0,47clho. Since f(y) varies comparatively 
slowly, the spectrum is deprived of high spatial frequencies. 

Figure 3 displays a reconstructed even part of the particle 
transverse distributions after an inverse Fourier transform of 

(3-3) S(K) = 1 + Sk(K) 

4. “NANOBUNCH” SIZE EVALUATION. 
Below roughly one third of the optical wavelength, no 

precise analysis of the bunch transverse structure can be 
made. True, size estimates could be obtained after the Fourier 
spectra, down to the resolution limit X0/471. Now, although 
high power lasers are commonplace in the visible and near 
U.V. spectra, a wavelength of 250 nm is a lower boundary for 
easy optics. Scanning the bunch across the interference 
fringes is the trick devised by Shintake [l] to diagnose so 
called “nanobunches” whose transverse size is around 10 nm, 
much smaller than the optical wavelength. 

The original proposal deals exclusively with gaussian 
transverse profiles. Indeed, such profiles are expected to be 
actualy achieved in future accelerators. Let then 

(4- 1) f(y) = e- Yz’az/(rr/?t) , 
satisfying to the normalisation condition. This implies a 
constant number N of particles in bunches with similar shapes 
hut different widths passing through constant intensity fringes. 
Jcf(0) and 10 are accordingly constants. 

(4-l) being an even function, its Fourier transform has no 
imaginary part, so F(K) = 0. The real part is also a gaussian: 

(4-z) ~(~1 = e- a2 &4 = e- a2a2/d2 , 

at given fringe interval d. 
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Figure 3. 

Scanning induces a signal modulation proportionnal to 
G(K) = m(a) which is shown on figure 4. The reasonnably 
accessible values of a correspond to a variation of the 
modulation depth in the range IO%-90% of the maximum. At 
given laser wavelength, the lower limit for an evaluation of 
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the bunch characteristic width a is 1620, obtained with 
counterpropagating parallel beams perpendicular to the 
electron velocity and 90 % modulation of the Compton signal. 

Now, since a general scaling law holds for Fourier 
transforms of scaled functions with constant value at the 
origin, the scanning method may be applied to other 
distributions for which a characteristic length can be defined. 

0 

Figure 4. 

However, in all cases but the gaussian, the Fourier transforms 
oscillate: small modulation depths might correspond to 
several values of a. Fortunately, in such conditions, the 
Fourier analysis works fairly well. 

As an example, take the limit case of a distribution in the 
form of a constant height “square” pulse. Then one gets 

(4-2) m(a) = sin(Ka) /Ka . 
The gaussian and the “square” are opposite limit cases. If the 
corresponding m(a) are drawn on the same plot, as shown on 
figure 4, they are quite close to each other in the lo%-90% 
range. The difference is at most 20 %. Only very precise 
measurements of the modulation depth thus enable one to 
discriminate between different electron density profiles across 
the bunch. 

5. ADJUSTABLE LASER INTENSITIES. 
If one relaxes the normalisation condition on f(y) and take 

(5-l) fly) = e- y2’a2 , 
then Je is a constant and 

(5-2) G(K) = g(a) = afi em IT.* a2’d2 , 
which, in the limit of small a’s, is proportionnal to a. In order 
to keep J, constant, the signal should be lowered by the same 
amount as the bunch is squeezed in the y direction. This can 
be achieved by playing either with N or with the laser 
intensity. Since attenuation by a prescribed factor is 
commonplace in laser beam handling, the second solution is 
to be prefered. The smallest attainable value of a thus depends 
only upon the sensitivity of the measuring device. 

Reducing the laser intensity is a major drawback for the 
use of g(a) in the diagnostic of nanobunches. It is shown in 
[I]. that the minimum laser power to get a high counting rates 
is rather moderate: 20 M.W. in pulsed regime. Now, lasers 
exist in the optical range with power far exceeding this 
requirement. Then, one could use attenuated laser beams for a 
in the vicinity of ha/4n. At smaller a’s, attenuators are 
removed so that the laser intensity grows proportionnally to 
the squeezing of the bunch. Large Compton signals and 
modulation depths h(a) can thus be obtained at small a, as 

displayed on figure 5 for the case of distribution (3-2). 
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Figure5. 

6. CONCLUSION. 
The combination of optical interference and Compton 

scattering provides efficient diagnostic methods for electron 
bunches with rectangular cross section. Given the laser 
wavelength within the range defined by inequalities (3-l) by 
playing with the angle between the laser beams in the 
interference region [4] and the displacement q of the bunch in 
the y direction, one gets both the real and imaginary parts of 
the Fourier transform of the transverse distribution. Inverse 
transforms restitute the even and odd parts of the structure 
which is completely resolved. This high resolution method 
cannot be applied to bunches with a size smaller than about a 
third of a wavelength (down to 80 nm for 250 nm light). 

When the transverse size a is much smaller than the 
optical wavelength (i.e. a << 80 nm), only an evaluation of the 
transverse size of bunches is possible. This is obtained thanks 
to a scan of the electron bunch across the fringes. Active 
scanning, i.e. adjusting the laser intensity to the squeezing of 
the bunch, could be an improvement of the method when 
applied to very small a. 
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