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Abstract 

A global orbit feedback system has been installed 
on SPEAR to help stabilize the position of the photon 
beams. The orbit control algorithms depend on either 
harmonic reconstruction of the orbit or eigenvector 
decomposition. The orbit motion is corrected by dipole 
corrector kicks determined from the inverse corrector-to- 
bpm response matrix. This paper outlines features of these 
control algorithms as applied to SPEAR. 

1. INTRODUCTION 

A project has been initiated to stablize the electron 
beam orbit in SPEAR. The goal is to correct for current 
related and temperature related orbit motion in order to 
reduce motion at the 9 photon beam source points. In the 
first phase of this project, we utilize existing local servo 
loops that keep the photon beams fixed at monitors located 
several meters from the source El]. Much like the original 
NSLS system [21, the job of the global feedback system is to 
complement the independent servo controllers to provide 
more stable photon beams. To reduce competition between 
the global and local feedback loops, the effect of the local 
servo bumps is subtracted from the global orbit perturbation 
before processing in the orbit control algorithm [3]. 

Presently, the global orbit control system operates 
on the SPEAR control computer with a cycle time of about 
20 sec. Conversion to fast digital signal processor boards 
with PID (or more sophisticated) feedback compensation is 
underway [4]. To date, we have pursued two orbit correction 
algorithms, namely, harmonic orbit representation and direct 
decomposition of the orbit in terms of the eigenvectors of 
the corrector-to-bpm response matrix. In this paper, we 
discuss aspects of these algorithms that may be useful to 
other laboratories developing similar global orbit feedback 
systems. Specifically, practical questions related to 
estimation of harmonic orbit content from unequal beam 
position monitor (bpm) phase intervals [SJ, harmonic 
estimation in the presence of bpm readback noise. and a 
technique to decouple the local and global orbit feedback 
systems in the framework of eigenvector correction, are 
discussed. For SPEAR, we typically use 20 bpms and 30 
correctors in each plane. The present horizontal and vertical 
beta&on tunes in SPEAR are 6.834 and 6.714, respectively. 

2. HARMONIC ORBIT CORRECTION 

Harmonic correction is based on the fact that, in 
normalized betatron coordinates, a dipole field error 
generates an orbit perturbation with harmonic amplitudes 
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Figure 1. Harmonic spectrum for random orbit 
perturbations in SPEAR. 
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where v is the tune and n is the harmonic number. In 
practice, there may be a distribution of field errors that 
superpose to make a more general spectrum; however, a 
random distribution produces a spectrum similar to that for a 
single dipole kick. Hence, as shown in Fig. 1, a large part of 
most orbit perturbations in SPEAR can be removed by 
canceling the dominant n=6,7,8 the harmonics. 

Harmonic orbit correction proceeds in two stages. 
First. the orbit perturbation is approximated by a sum of 
harmonics (Fourier series). Then a corrector pattern is 
applied to cancel the corresponding harmonics. In the first 
stage of harmonic orbit correction, the harmonic amplitudes 
must be estimated from bpm readings, which, in SPEAR, am 
not distributed at uniform phase intervals. The harmonics 
can be estimated by writing each (normalized) bpm reading 
as a sum of sine and cosine terms. and solving the set of 
equations for the harmonic coefficients. We solve this linear 
system of equations with singular value decomposition 
(SVD), which automatically gives the least squares fit 
solution if the number of bpm readings exceeds the number 
of harmonic expansion coefficients. 

If the number of harmonic coefficients is chosen to 
equal the number of bpms, the predicted orbit is correct at all 
bpm positions (n-equations in n-unknowns). However, due 
to the non-uniform grid, aliasing effects, and bpm readback 
noise, the harmonic representation of the orbit can be much 
larger than the actuai orbit between the bpms. Selecting a 
subset of harmonics from this spectrum can also result in a 
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poor approximation to the perturbed orbit. Another 
disadvantage is that large corrector kicks may bc nccdcd. 
For these reasons, given the non-uniform distribution of 
bpms in SPEAR, it is better to solve for a least-squares fit on 
a subset of harmonics to appmximate the orbit. 

For bpms separated by uniform phase, the harmonic 
coefficients can be found via a DFT. With non-uniform 
phase intervals, it is possible to make a linear transformation 
to a uniform phase grid. One method of transformation starts 
with the assumption that the bpm readings are samples of a 
periodic, band-limited function which may be represented by 
a finite sum of harmonics. In this case, the harmonic 
expansion is first written for the non-uniform phase bpm 
readings. Next, the same equations are written for the 
(unknown) bpm readings at uniform phase intervals, and the 
expansion coefficients are eliminated between the two sets 
of equations. The result is an interpolation formula for a 
linear transformation from the non-uniform to the uniform 
grid. Note, however, that the harmonic coefficienls obtained 
from a DFT on the ‘transformed’ data will be the same as 
those obtained directly from the non-uniform grid data. 
Problems with aliasing and bpm noise on the original non- 
uniform grid cannot not be removed by the transformation to 
a uniform grid. 

A difficulty can arise in the correction process 
when only a subset of harmonics is used to cancel the orbit 
perturbation; corrector errors introduce other (uncorrected) 
harmonics on each correction cycle. These components 
accumulate in a random-walk manner. This effect can occur 
on SPEAR under some conditions, 

3. SINGULAR VALUE DECOMPOSITION 

Singular value decomposition (or ‘eigenvector’ 
decomposition) of the orbit has the advantage that one 
operates directly on the corrector-to-bpm response matrix 
via SVD, 

R=UWVT (2) 

to produce an orthonormal basis of eigenvectors (contained 
in the columns of U) that can be used to decompose the orbit 
perturbation [6,7,8]. The diagonal elements of W contain the 
corresponding singular values (‘eigenvalues’), and the rows 
of VT represent the corresponding (orthonormal) corrector 
patterns needed to produce the ‘eigen-orbits’, U. An example 
of the spectrum of singular values from the vertical 
component of the response matrix measured on SPEAR is 
shown in Fig. 2. The SVD algorithm automatically accounts 
for cases with more correctors than bpms, and otherwise 
rank-deficient response matrices. SVD also produces the 
minimum RMS corrector amplitudes required to correct the 
orbit. See Reference [9]. 

To apply the SVD orbit correction, we first project 
the orbit perturbation onto each eigenvector of the matrix U, 
and use the projection coefficients, divided by the singular 
values, to determine the corresponding strength of the 
corrector eigenvectors. V. Since small singular values 
indicate large corrector strengths, and their eigenvectors 
often correspond to local rather than global orbit 
perturbations, it is common practice to set a lower bound on 
the singular values to be used in the orbit correction. Similar 
to discarding 
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Figure 2. Spectrum of singular values for vertical 
response matrix measured on SPEAR. 

Fourier components far from the tune in a harmonic orbit 
correction, the effect is to reduce sensitivity to bpm noise 
while accepting that the corrected orbit will not pass through 
each bpm exactly. For reasons discussed above, corrector 
errors can excite modes not covered by a truncated 
eigenspectrum. Figure 3 shows the effect of limiting the 
spectrum of harmonics, or SVD eigenvectors, used to 
represent the orbit. The data shown in this plot is an average 
value of the RMS orbit (evaluated over all bpms) prodpced 
from an ensemble of 300 perturbed orbits with 10 micron 
random quadrupole displacements and 10 micron random 
bpm readback noise. These plots show how the orbit 
correction is improved and the rms corrector strengths 
increase as the number or harmonics or eigenvectors is 
increased. The bpm readback noise eventually limits the 
level of orbit correction which can be achieved. 

With a global harmonic or SVD orbit correction 
system operating in conjunction with local beamline steering 
systems, each global orbit correction cycle may cause the 
local system to respond in order to keep the photon beams 
on target. If a unified global/local feedback system is not 
available, an alternative approach to decoupling the systems 
is possible. In this case, one first measures the corrector-to- 
photon bpm response matrix. In SPEAR for instance, there 
are 30 correctors and 9 photon bpms. SVD will produce 9 
eigenvectors that can control the orbit at the photon bpms, 
and 21 eigenvectors that perturb the electron beam orbit 6uf 
do not disturb rhe photon beam posirions al the photon 
bpms. If we use this set of 21 eigenvectors as an expansion 
basis for global orbit correction system, then the global and 
local systems are effectively decoupled. 

In conclusion, we show in Fig. 4 an example of 
orbit control on SPEAR. Here, the SVD orbit correction 
algorithm was applied in a feedback loop with 15 of 20 
vertical plane eigenvectors chosen to correct the electron 
beam orbit. The figure shows the vertical RMS orbit initially 
drifting before the feedback system is switched on. At time 
t=lhr, an orbit was measured to serve as the reference orbit 
for the global feedback system. This orbit was retained in 
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Figure 3. Comparison of harmonic and eigenvector orbit correction as a function of (a) number of harmonics and (b) 
number of eigenvectors used to represent the orbit. RMS values evaluated at bpm positions. 

memory. Shortly after time t=2hr, the global orbit feedback 
system was switched on, and the orbit returned to the 
reference position (measured at t=lhr). 
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