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Abstract 

Thermal noises are important and unavoidable ingredients 
in the density distribution of beam particles in accelerators. 
To understand their effects is especially important in 
achievement of low emiltance in the SPring-8 storage ring. 
We treat those noises caused by quantum excitation and RF 
ripples in a systematic way and obtain criteria on the ripples 
for the SPring-8. 

1. INTRODUCTION 
Solving problems caused by noises in RF system in 

proton storage rings, where phase feedback between beam and 
RF is essential, is very important lo keep long term stability 
against diffusion [l]. In an electron storage ring, they are 
negligible in view of stability because the stochastic process 
of quantum radiation smears out any history of motion. 
However, to obtain an equilibrium emittance or distribution, 
RF noises must be included by the same way as quantum 
excitation. Furthermore, when peaks in frequency spectrum of 
RF noises exist, they induce systematic oscillations in the 
longitudinal motion of beam bunches. These oscillations may 
affect the equilibrium bunch length significantly when a 
frequency of noises harmonizes with that of the synchrotron 
oscillation. In this paper, the equilibrium r.m.s. value of a 
longitudinal distribution is systematically derived when the 
RF phase noises are significant. These noises are mainly 
caused by a ripple of the acceleration voltage in klystrons. We 
obtain quantitative conditions on the ripple to suppress 
increases in the equilibrium bunch length due to the RF 
noises below a certain limit. 

2. THE MODEL 
We start with equations of the linearized synchrotron 

oscillation in a storage ring with an RF gap, 
( A@ = 2Tcr~1 SEi 

4xa 
A6Ei = -2~r,$w+t - 2 0, SE, + Qi (1) 

where the variables SQi = $i - C#Q and 6Ei = Ei - Es denote 
deviations from synchronous values of phase with respect to 
that of RF acceleration voltage and energy, respectively, at the 
i-th turn. It is noted that the synchronous values & and ES are 
fixed in our treatment and, therefore, SC& is the difference in 
arrival lime of each particle and the synchronous particle at 
the RF gap in the i-th turn measured by a designed RF 
frequency. A stands for the change in a turn: AXi = Xi+1 - Xi 
for a v‘ariable X. ws denotes the revolution angular frequency 
and crJ stands for the radiation damping coefficient for the 
synchronous particle. (2, denotes energy fluctuation due to 

quantum radiation in the i-th turn and we explain it in detail 
later. 0, is the angular frequency of the plain synchrotron 
oscillation given by 

2 

q2 = 2$, - eV,(-co*) , r,+!$, 
5 

where eV0 is the peak acceleration energy-of the RF, h the 
harmonic number and ps stands for velocity of the 
synchronous particle in the unit of the light velocity. qs is 
given by the momentum compaction factor a and the Lorentz 
factor ys of the synchronous particle as rjs = a - yse2. 
Numerical values of the fundamental machine parameters for 
the SPt-ing-8 [Zl are listed in Table 1. 

Table 1: Fundamental machine parameters for the Spring-8 
storage ring. Values (in parenthesis) correspond to 
single (multi) bunch operation. 

Es 8 GeV 
WS 29~ x 0.20878 x IO6 rad/sec 
h 2436 
a 1.460 x 10-4 
as 3.236 x lo2 set-l 
eve 1 1.7 (1.39 ) x 10e2 GeV 
4% 1 2.324 (2.040) rad I 

The energy fluctuation term c2, can be written as 

Qi = Pi<U> + ,tl fi,k p 
wherefi,k = Ui,k - <u> is the fluctuation in energy of the k-th 
radiated photon in the i-th turn and /Li = Ni - <Nz is the 
fluctuation in the number of emitted photons in the i-th turn. 
Note that -c...> stands for the ensemble average. Using the 
fact that N obeys the Poisson distribution, we immediately 
obtain, 

<Qi> = 0 and <Q,Qj> = Sij<N><U’> . (2) 

Eq. 
There are two ways to introduce RF noise in phase in 

(1) depending on whether we consider the noise in the 
reference phase or not. It is necessary to consider this effect 
when the phase of RF shifts continuously, such as in a case 
of the shift due to noise in a phase lock loop, and a set of 
values (@s, Es) changes during motion of the synchronous 
particle. Here we consider, however, that the definition of the 
synchronous particle (OS. Es) is fixed as mentioned 
previously. We therefore replace the factor 6$i+l in the 
second line of Eq. (I) by S&+1 + aji+l with @,+I being the 
noise. 

We assume that 0i is composed of a white (thermal) noise 
part and a systematic noise part so that 01 = @/“’ + 4#” . 
The white noise component satisfies 
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<NW)> = 0 and <Q”(w)@jw)> = 8, A ’ I 4 ’ (3) 
where the dispersion d, must be determined from 
characteristics of the RF. The systematic part corresponds to 
the contribution from peaks in the frequency spectrum of the 
noise. This drives a forced oscillation and it has a feature of 
no disappearing correlation between different nuns. We write 

@I = FSk sin(c@t, + I&)), (4) 
where ri = iTs and Ts = 2d0s is the period of a revolution. 
The sum is taken over all spectral components, each of which 
is characterized by its amplitude Sk, angular frequency of) 
and initial phase &‘. We consider y/js) as a randomly 
distributed variable. 

3. SOLUTION TO THE EQUATION OF MOTION 
Equation (1) with the introduction of @i+~ term and 

specifications of noises as given by Eqs. (2-4) leads to a first 
order linear Langevin equation and it is straightfonvard to 
solve the equation by means of the Green’s function of the 
corresponding Fokker-Planck equation. For the purpose of 
obtaining second order correlation functions, it is however 
sufficient to write down a formal solution of Eq.(l). We refer 
[3] for the details. 

4. RESULTS 
Dispersions of the phase of revolving particles, o@ and of 

the energy, CTE, at the stationary state are composed of 
contributions from quantum emission, white and systematic 
noises. We write the dispersions in a form 

cm+= ojiN ( 1 + Riw) +Rp)) for X=$orE, 
where a& is the natural dispersion squared, namely the 
contribution from the quantum emission noise, Rjyw) and Ry’ 
are the contributions from the white and systematic RF 
noises, respectively, normalized by a,&. Explicit forms of 
thesequantitiesare given as 

CT& = 1 1 - ZIGS A-y, - S12 + 62 8 x .A (5) 

4N = 1 E2r2 & 6 7 _ (6) 

R(w) = @"' = Rb'd = 
2 

+ ’ (7) 

RF’ = 1 - ;nE6 x 

k (9) 

where the small parameters E’andS are defined in Table 2 and 
6’ = S + RE. Resonance behavior of Rys’, which is caused by 
the systematic RF noise, is conveniently described in terms of 
a parameter defined as )lk = Isin(r@T,/Z)[ /KC The 
resonance factor Q in Eqs. (8) and (9) is given by 

“i’=(&&[l +(y;;)2]. 

where 

and 

Pi = 40) * q&&KiJmax ’ 
As it can be seen from these exnressions, the contribution . 

to fli from the white RF noise is given as O&,X(~) = A:, 
which means that the white RF noise directly vibrates the 
oscillation center @r. The amplitude of the systematic RF 
noise is, on the other hand, modulated by the resonance factor 

Table 2: Dimensionless small parameters. Values 
parenthesis) correspond to single (multi) bunch operation. 

(in 

hmerical results in the SPrinp-8 Storage Ritlg 

To estimate ValUeS Of UQN and a&jr, we make use of 
relations [4] 

4.3, = -u 11 2 
27 c and uC = 

where ps is .the bending radius of the design orbit. 
Substituting ps = 39.2718 m, we have uc = 28.9 x lop3 
MeV. Average radiation loss per tern, cN><u>, is 12.4 MeV 
in SPring-8 taking losses in insertion devices into account 
and we have 

<N>a2> = <N><u> $ = 0.474 MeV’ . 

Adopting this value and taking values for other parameters in 
Tables 1 and 2, we obtain from Eqs. (5) and (6) that 

(T@ = 4.29 [5.83j~lO-~ (rad) , 
urn = 8.76[8.76] (MeV) , 

where numbers (in square brackets) are values for the single 
(multi) bunch operation. We use this notation throughout the 
rest of this paper. 

Behavior of R!f) in Eqs. (8) and (9) is dominated by ok* 
in the vicinities of resonance points given as z = 
l.ooO[O.9995j in a coordinate defined bv 

,JP$kl [ 1 #j’ 1 
, where v = - + - 

0, 2r.’ 
and [...]G denotes the Gauss’s symbol. Note that K$ as a 
function of&i&@ in the whole region is obtained from K$ in 
the region 0 I WY’ I o&!. When we neglect the second and 
higher order terms of the small parameters, the resonance 
condition is given as CUP’ = +fls + VO,. This result means 
that there are two classes of resonance points. One is in a low 
frequency region near WY’ = Q and the other is in high 
frequency regions near WY’ = VW,. The maximum height of 
the resonance peak is given as (KJ&, = 3.380[ 1.8271 x lo2 
and the full width of the half maximum of K$ in WJ;” as 
FWHM[W~~;K$I = 0.54.52[0.7420] x 10-l Rr. R)f’ is thus 
not negligible compared with the unity when one of the 
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components k in the systematic RF noise has a frequency 
@’ near a resonance region and the comesponding amplitude 
Sk is larger than or near to a value K~-~u$N, which is 
0.05[0.07]a$~ at the peak. 

, 

* I I.. I , . * 

1- 14p 

Fig. 1 Contour plots of (a) UX/UXN = 1.1 and (b) 
~Tx/oxN = 1 .Ol for X = 4 and E in the space of 
sk/U$N and z. Aqfo+y is fixed to 0.1. 

Fig. 2 Contour plots of m/am = p for (a) single 
and (b) multi bunch operations in the space of 
Sk/a,$N and A+~,/u#N. Solid (broken) lines 
correspond to X = 4 (f?). Values of p are shown in 
the figure. z is fixed to 1.4. 

We now consider a condition that the increase of the 
equilibrium bunch length due to the effect of RF noises must 
be smaller than a certain limit. This condition can be written 
as 

p > CiX/(3XN = J1 + R(“‘) + Rk’ , (IO) 
for a given value of p > 1. In this condition, Rcwj is given 
from Eq. (7) as R(W) = 0.524[0.283] x (Ag//a+~i~. Since 
RjS’ is a function of Sk and Of’, we obtain criteria on the 
RF characteristics, AQ, Sk and of) to satisfy the condition 
(10). Figs. 1 and 2 show boundaries of the condition (10) for 
different values of p in z-(Sk/o@ and (d+//a@+(sk/cf$,N) 
planes, respectively. In these figures, we have assumed that 
there is only one component k in the systematic RF noise. In 
Fig. 1, A#/OQN is fixed to 0.1. This figure shows that 
Sk/0QN is limited to a small value to satisfy the condition 
(10) when wF’ is near a resonance region. The condition for 
X = E gives a limit stronger (weaker) than that for X = 4 in : 
> I (z i 1) region. This is due to a factor ~2 in RF’ in Eq. 

(9). The difference between the single bunch operation (solid 
lines) and the multi bunch operation (broken lines) is small 
for the present value of A~c~N. 

For a fixed of’ (z = 1.4), the limit on Sk/aq,+r is given 
as a function of A~/OQN in Fig. 2. We observe that the 
condition for X = E gives again a limit stronger than that for 
X = f$ This is a general feature of the boundaries for z > I as 
we have mentioned above. Comparing Figs. 2a and 2b, we 
find that the limit is weaker in the multi bunch operation than 
that in the single bunch operation at large values of AQ.‘o$N. 
Absolute maximum of A@ for a given p corresponds to the 
boundary of the condition (10) when d,“’ = 0 and, therefore, 
is independent of X and z. Its value for p = 1.01 (l.lO), for 
instance, is (A#- = 0.84 (2.71) x 10q2 (rad) for the single 
bunch operation and (A#,, = 1.56 (5.03) x 10v2 (rad) for 
the multi bunch operation. 

In SPring-8, the phase noise @i is mainly caused by a 
ripple AV of an acceleration voltage V of a klystron. For a 
typical operation, they are related as [51 

&$) = 20.94(rad) x q. 
The decomposition of the noise into the white and systematic 
parts is the result of a corresponding decomposition of the 
ripple. The r.m.s. value of each component of the ripple, 
AVlw) and Ai@ can be measured by using a power 
spectrum analyzer. The above equation together with Eqs. (3) 
and (4) gives 

% 4 *p: 20.94(rad) 
L\vo= A@) =----v--’ 

Considering again the case that only one component exists in 
the systematic noise, we can find boundaries for Atiw) and 
AVfs) from Figs. 1 and 2 to satisfy the condition (10). As we 
have observed in the figures, the boundary limits the ripple 
components stronger for the single bunch operation than for 
the multi bunch operation. For typical numbers to give 
criteriaon the ripple components, we have forp = 1.01 (1.10) 
that 

AV(W)N < 0.401 (1.30) x 10-3, 
when there is no contribution from the systematic noise 
component and 

dvwv < 0.29 (0.94) x 10-3 x &i?i$, 

when we can neglect the contribution of white noise 
component. 
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