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Abstract 

To investigate the properties of Crystalline Beams in their 
ground state, the equations of motion of a single ion and the 
envelope equations are derived. It is possible to express the 
status of motion with a set of transfer matrices associated to 
each of the magnet elements of the storage ring. By inspection 
of the eigenvalues of the total transfer matrix one then deter- 
mines the onset of crystalline structures and the stability lim- 
its. An analytical approach is also possible, based on the 
estimate of the shifting of the frequencies of oscillation, beta- 
tmn and longitudinal, and on the approaching of a major half- 
integral stopband resonance driven by the space charge. 

1. INTRODUCTION 

A storage ring is defined by assigning the sequence of the 
magnet elements that provide focussing of the particle motion 
and bending of the trajectory along a closed orbit of circum- 
ference 2RR. The magnet distribution has periodic@ P. It is 
assumed that bending takes entirely place on a midplane. The 
lattice behavior is described by the amplitude functions ph,” 
and the betatron tunes vh r 

The beam of ions is sbcified by assigning the charge state 
Q and the mass number A. The particles have a constant 
kinetic energy to which we associate the relativistic parame- 
ters p for velocity and y for energy. The total number of parti- 
cles is N. The beam is completely debunched. We define the 
average particle spacing as the ratio h = 2xR /N. 

To understand the generation of Crystalline Beam struc- 
tures, we need to solve the equations of motion of particles 
under very large space-charge forces. But first we explain the 
sequence of the processes involved [l-5]. 

2. PHENOMENOLOGY OF CRYSTALLINE BEAMS 

Let us begin with a very dilute beam, owning a low num- 
ber N of ions and a large spacing A, for which space charge 
effects are small and can be ignored Cooling is applied to 
reduce the temperature of the beam by removing internal 
energy. As a consequence, the amplitude of the transverse 
oscillations decreases bringing particles closer. Eventually, 
the amplitude of the transverse oscillations becomes compara- 
ble to the average spacing h. At the start, the momentum 
spread is large and particles drift in the longitudinal direction. 
With cooling the longitudinal momentum spread also reduces. 
When the spread is sufficiently small, particles acquire an 
aligned configuration, one behind the other. The magnitude of 
the relative motion will be so small that drifts become oscilla- 
tions caused by the repulsion between neighboring particles. 
When the amplitude of the longitudinal oscillations has also 
reduced to a fraction of the spacing, a siring has formed. 

* Work performed under the auspices of 1J.S. Department of Energy. 

A particle performs small amplitude oscillations around 
the equilibrium position. The longitudinal oscillation has the 
frequency v, fe and the radial and vertical motion have corre- 
spondingly the betatron frequency vh,” fe with fo the revolu- 
tion frequency. Suppose that the experiment is repeated many 
times; every time the number of particles N is increased some- 
what. For large spacing h, the space charge forces are not 
important and can be neglected. As h decreases, the space 
charge becomes more effective with the consequence that the 
longitudinal oscillation frequency increases and both the beta- 
tron frequencies decrease. At a critical value of h the oscilla- 
tion frequencies and the revolution frequency may be found in 
resonance. When this occurs the motion becomes unstable and 
the string is destroyed. If the motion is observed in the proper 
phase space, it is seen that the origin becomes an unstable 
fixed point around which the motion diverges. This is accom- 
panied by the appearance of two new stable fixed points 
located off-axis. We call this phenomena bifurcation [l-5]. 

The splitting may occur either in the radial or vertical 
direction depending on which resomance is encountered first: 

2 v,,v = mp, m = 0, 1,2, .., (1) 

It is also possible that a momentum bifurcation occurs if the 
longitudinal resonance 

2v, = P (2) 

is encountered first. Another possibility is coupling between 
radial and longitudinal motion caused by the curvature of the 
reference orbit in the bending magnets 

vh + vs = tnP, m = 0, 1, 2, . . . (3) 

The occurrence of the transition is governed by the critical 
value of the crystal spacing [21 

(4) 

The process of bifurcation repeats over and over, by 
increasing the number of ions N, generating more complex 
structures of Crystalline Beams. Since we are assuming an 
ideal storage ring, without magnetic imperfections, for sym- 
metry reasons, the bifurcation will occur simultaneously to all 
particles in the same direction. 

Any structure can be thought of a number n, of substrings 
parallel to each other, placed symmetrically around the com- 
mon axis. The number of substrings is a power of 2, and the 
particle separation h is the same to all of them. We can write 
ns = 2P where p is the order of bifitrcation. It can be shown 
[l-5] that the governing parameter is the critical spacing h,, 
Eq. (4). Every time the particles spacing reaches about this 
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value, a bifurcation occurs. The direction of the path of bifur- 
cation depends on the periodicity and on the tuning of the stor- 
age ring; otherwise the details of the magnets arrangement are 
not important. 

3. THE EQUATIONS OF MOTION 

We shall refer to the horizontal x and the vertical y dis- 
placement from a reference trajectory, along which we mea- 
sure the curvilinear coordinate s. Instead of time, we take as 
the independent variable the pathlength s travelled by a parti- 
cle with the reference momentum. A prime denotes derivative 
with respect to s. The motion is also described by the relative 
momentum error 6 and the difference of path length 6. The 
equations of motion are [II: 

y” + K, (s) y - k,F, (x, y, o) = 0 

n”+K,(s)x-k,F,(x,y,o) = h(s)6 

0’ = h(s)n-s/y* 

6’ = k,F, (1, y, a) 

where, with r. = 1.535 x lo-‘* m, 

ko = QoleAB2? 

(5) 

(6) 

(7) 

(8) 

(9) 

&h(s) are periodic functions which define the focussing of the 
magnet element sequence; h(s) is the curvature function: zero 
everywhere except in the bending magnet where it equals the 
inverse of the bending radius. Fv,Jie are the components of the 
space-charge force. 

The total solution of the system of Eq.s (5-8) can be 
divided in two parts: a particular solution which describes the 
envelope of the Crystalline Beam in its equilibrium configura- 
tion, and a free solution which is oscillatory around the equi- 
librium configuration. To determine the two parts of the 
solution we let 

x=x,+u y=yo+v rJ=(T”+(T S=S,+8 (10) 

where x,, y,, (3, and 6, describe the equilibrium configuration 
of the n-m substring and u, v, 0 and 8 are perturbations of 
motion of a test particle on the same substring. 

Inserting (10) in the expression of the space-charge force 
and linearizing yield [l] 

F, = F&,,Y,) + WWY),=,,~=~ v + . . . . . (11) 

and similar for Fh and Fe. Separating the contributions from 
the two parts, we finally derive the following two sets of dif- 
ferential equations [ 11: for the equilibrium configuration, 

~0” + K,(s) Y,, - K,, LY, = 0 (12) 
&,“+ K,,(s) &, - KS, <h &, = h(s) 6, (13) 

CT,’ = h(s)x, - S”M (14) 
6,’ = ~j!LL% (15) 

and for the perturbation, 

v” + K,(s) v - K,,q, I’ = 0 (16) 
U” + t&(S) U - K,,q, 14 = h(S)8 (17) 

-, 0 = h(s)u - sir’ (18) 

F’ = 2j?K,,Tj,Z 

where 

(19) 

4% = (2 I R*) (A, I 2~)~ = h,,’ (20) 

is the space-charge strength. [vJ,$ and qv,h.e are form factors 
which depend on the arrangement of subsuings in the Crystal- 
line Beam. For instance, for the simplest configuration: the 
sting9 &h.e = 0 and %,h,e = 1. For more complex geometries, 
they are functions of the coordinates x, and yo. 

Define 

2 
a 

(x,-xJ2 (Y,-Y/J2 
nm = 

y212 
+ 

y21c2 
=U nm2 + vnm2 

z =n-=nl 
nm = - I. 

f,(a,z) = x[a2+ (i-T)2]-n’2 
i 

The form factors for the envelope equations are: 

Ch = ;c f&%p&J(~,-%J 

c, = ~~fd%&~ (Y. -Y,) 

c, = 231em g, = 1.2 

The form factors for the stability equations are: 

% = ~~I:[f3(n~n;T,,)-3f~~,2f,(a~ms,,)! 
m 

1 
11" = z C[ f3(a,,~~,,>-%,2f 5(~,,hJl 

m 

(21) 

(22) 

(23) 

04 

f25) 

(26) 

(27) 

G3) 

The two systems of differential equations (12- 15) and ( 16 
19) are written n, times, each time for a diierent substring. 
Because of the up-and-down and right-to-left symmetries, 
only a number equal to the order of bifurcation p is required. 

It is seen that coupling between the radial and longitudinal 
motion is introduced by the product of the space charge 
parameter KS, with the curvature h in the bending magnet. The 
ratio 5 = h,, / h can be used to estimate the magnitude of the 
coupling: 5 << 1 corresponds to weak coupling; 5 - 1 corre- 
sponds to strong coupling. 

4. THE ENVELOPE AND STABILITY CONDITIONS 

Several methods are available to solve numerically the 
system of Eq.s (12 - 19). For example, one can make use of a 
matrix notation and inspect the eigenvalues of the overall 
transfer matrix per storage ring period. The exact analytical 
solution is nontrivial because of the presence of the nonlinear 
space-charge term. We shalI attempt to describe the solution of 
the system by using some intuitive facts. 

We desire a solution that is periodic and close, so that 
period after period we recover the same beam configuration. 
An important issue is the shear of motion between the outer 
and the inner part of the beam caused by the curvature of the 
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trajectory in bending magnets. In order to maintain a rigid 
periodic configuration, different parts of the beam have to take 
different momenta values so that the overall motion satisfy the 
condition of isochronistn. In particular, since the path length 
difference o, is periodic, integration of Eq. (14) over one 
period gives no net change. This relates in average the loca- 
tion x, of the n-th substring to the momentum deviation S,, 

x,lR = &I$ (29) 

We need to estimate two limiting values of the crystal 
spacing, of which the larger one ht determines the onset of 
the structure being examined, and the smaller one & deter- 
mines the stability limit of the same structure. Thus 

i2-ch.c h, (30) 

is the range of existence. As h varies within the range, the 
actual locations (h, y,) of the substrings also vary. 

The same method is used to determine the limits ht and 
112. The space charge causes shifting of the oscillation frequen- 
cies until a major half-integral stopband of the type (l-3) is 
met. For the condition of onset of the structure we shall apply 
the method to the envelope equations (12-15), and to deter- 
mine the stability limit the method is applied to the perturbed 
equations (16-19). Since the solution of the beam envelope 
equations is required to be periodic and closed, the Crystalline 
Beam structure can be triggered either by approaching a 
radial, vertical or longitudinal stopband (1) and (2) but not the 
coupling resonance (3) which may cause loss of stability but 
does not necessarily generate a closed orbit. 

In good approximation [5], the betatron tune depression 
caused by space charge is derived by treating the space-charge 
term in K,, as a perturbation; that is, for the envelope equa- 
tions (12-13): 

(31) 

and a similar expression for the perturbed equations (1617) 
where &. is replaced by ?lh,v At the same time 

2 
v, = 4 ( 1 2 ltc, of 11,) (32) 

Let &I,~ be half of the distance of the original betatron 
tunes vh,V from the nearest lower half-integral stopband. By 
requiring that Av~,~ = 8v~h,~ or that 2v, = P, we derive the 
following relations between the form 
spacing h 

t h / A, I3 = &,v,e (&I* h) Ch,v.e 

where 

factors cl,” and the 

(33) 

ch,v = “h,v cjvh,v (34) 

C, = 16/P2 (35) 

The number of relations similar to (33) is equal to the 
order p of bifurcation. They can be solved simultaneously to 

derive the positions (.x~, yn) of the substrings as functions of 
the particle-to-particle spacing h. In particular we can deter- 
mine the value h = A1 at which the structure appears by requir- 
ing that for all n, substrings 

( A, /A, I3 < &,, t-r, = 0, Yn = 0) ch,v,e (36) 

On the other end stability is lost at h = h, when 

( %2/ 1, I3 ’ 7)h,v,e,c &I* %I) Ch.v,e,c (37) 

where the locations of the substrings were previously deter- 
mined with the help of (33). We add the possibility of losing 
stability by crossing the coupling resonance (3) by introducing 
the factor 

CC = (%h+?Vh)2 (38) 

where q is the smallest positive value of 

q = 1 + l+ ,,,,(v,,-“IP)!flev,,]ln (39) 

and% = 9e 
It can be shown that typically hl - 2 h, and &, - 1, 

Also, at the stability limit h - &, the transversal separation 
among substrings is comparable to h,. 

5. CONCLUSION 

We have determined that Crystalline Beam structures are 
described by the critical particle spacing h,, given by Eq. (4). 
The quantity A,” is a measure of the ion density that can be 
reached at the limit of crystallization. We compare this value 
with the density of an ordinary gaseous ion beam at the space 
charge limit. This can he expressed in terms of the average 
particle separation & 

7cQ 2r oR 
2 

AVh.” = 
A P 2~ 3v& 

from which and Eq. (4) 

kc 3 ( 1 
1.2 Ch ” 

5 =7-l (41) 

Eq.s (4,40 and 41) imply that Crystalline Beams will still 
yield densities comparable to but not larger than those of gas- 
eous beams at ordinary space-charge limit. 
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