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Abstract 

By using a recently proposed thermal wave model for rel- 
ativistic charged particle beam dynamics, a new approach 
for studying the charged particle beam dynamics in terms 
of Wigner phase-space distribution is given. By taking into 
account a quadrupole device with sextupole and octupole 
deviations, we make a comparison between the model pre- 
dictions and the results of a conventional single particle 
tracking code. This approach opens the possibility to 
study transverse dynamics in the phase space with a very 
powerful method. 

1 INTRODUCTION 

The transverse (longitudinal) dynamics of a charged par- 
ticle beam propagating through an optical device has been 
recently described in terms of a quantum-like model, the 
so-called Thermal CVaue Model (TWM) [l]. According to 
this model the beam transport is described in terms of a 
complex function, the beam wave function (BWF), whose 
squared modulus gives the transverse (longitudinal) den- 
sity profile. In TWM the beam wave function is assumed 
to satisfy a Schrodinger-like equation in which Planck’s 
constant is replaced by the transverse (longitudinal) emit- 
tance. This equation is in general written for a potential 
which accounts for the total interaction between the beam 
and the surroundings. In particular, in an accelerating ma- 
chine the potential accounts for both multipole-like terms, 
which do not depend on the particle distribution but are 
assigned in terms of the machine parameters, and collec- 
tive terms which depend on the particle distribution (self- 
interaction). Thus, the Schradinger-like equation in TWM 
can be in general non linear [Z, 6, 7, 91. TWM has been 
successfully applied to a number of linear and nonlinear 
problems concerning both transverse [l-5] and longitudi- 
nal [6-9] dynamics. This paper concerns the analysis in 
phase space of the transverse motion of a charged particle 
beam which passes through a thin quadrupole-like device 
with small sextupole and octupole deviations. On the ba- 
sis of our previous results [4, 51, here we use the Wigner 
function [lo] applied to the appropriate BWF as the most 
natural distribution function to describe our phase-space 
dynamics. Its projections on both configuration and mo- 
mentum spaces are obtained and a comparison between 
the theoretical predictions and the results of a standard 
kick code for particle tracking simulations is presented. 

2 BWF FOR 6-POLE AND &POLE 

Let us consider a charged particle beam travelling along 
the t-axis with velocity ,& (p M 1) and transverse emit- 
tance 6. We suppose that, at z = 0, the beam enters a 
focusing quadrupole-like lens with small sextupole and oc- 
tupole deviations. In the region where this device is acting 
the beam particles feel the following potential 

1 1 1 
U(x, %) = -k1x2 + --kg3 + -k3x4 

Z! 3! 4! (1) 
where ki is the quadrupole strength, k2 is the sextupole 
strength and k3 is the octupole strength (note that U(Z, Z) 
is a dimensionless potential normalized with respect to 
mo70P2c2, ms being the particle rest mass, and ys = 
(1 - ,02)-1/2 ), and x is the transverse coordinate (l- 
D case). In the framework of the TWM, the transverse 
beam dynamics is governed by the following Schradinger- 
like equation [I] 

ic g = - :&8+U(r,r)P 
j4(~, z)]” can be interpreted as the transverse density pro- 
file. By fixing as initial profile a Gaussian density distribu- 
tion of r.m.s. go, the initial BWF associated to (2) results 
to be 

U,(x) G @(x,0) = l X2 

[27RT;p4 
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(3) 

Provided that aokz/(3kl) < 1 and oiks/(12ki) < 1, the 
time-dependent perturbation theory applied to (2) for the 
case of a thin lens of length I (&l << l), allows us to 
give a normalized BWF in the configuration space. After 
passing the lens (Z 2 I), due to the aberrations the BWF, 
to the first-order perturbation theory, is a superposition of 
only four modes [5] 

Q(x,z) = exp -& +i& [ + i9” (%I] 
[27ru2( 1 + 159 + 105w2)2]“4 
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x ~:~oa,Hn(J;uv -) exp(ih$,(t)) , (4) 

where r E aiK2/Fc, and u G biKs/24~; K; G kil (i = 
2,3) are the integrated aberration strengths; bo = 1 - i3w, 
bl = -i3r&, b2 = -i3w b3 = -i&, b4 = -iT; H, are 
Hermite polynomials; and 

U”(Z) = K $ + I+?,2 
0 > 
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(5) 
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The Fourier transform of U(z, z > I) 

WP, z) = -& -m_ 
J 

q(x, z) exp(-ipz/E) dz (8) 

is the BWF in the momentum space (p E dp/dz EZ 2’). 
Consequently, I\E(z, r)12 gives the transverse particle den- 
sity whilst lip(p, z)12 gives the momentum distributions of 
the particles, for z 2 I, respectively. These configuration- 
space and momentum-space distributions have been al- 
ready compared separately with the corresponding distri- 
butions obtained from a particle tracking simulation in 
[4, 51. The comparisons showed a very satisfactory agree- 
ment, pointed out the first time in [4, 51. In the next 
section we give a full analysis in phase-space by means of 
the Wigner function associated to the BWF of the present 
problem (Eq (4)). 

3 PHASE-SPACE DESCRIPTION 

Since in the framework of TWM the particle behaviour is 
described by the Schradinger-like equation (2) it is worth 
to use all the formalism of quantum mechanics including 
the density matrix. We can describe the state of the beam 
in terms of the so-called Wigner function W(z,p, z) [lo] 
which depends on the phase-space coordinates. For pure 
state, it is given by 

If one integrates the Wigner function over the pcoordinate 
the z-space distribution (density) is obtained 

IQ(z, 41” = 1: W(~,P, 2) dp , (10) 

which coincides with the standard particle distribution 
function expressed in terms of its wave function introduced 
above. Analogously 

I@(P> 412 = 1: W(Z,P, 2) dx > (11) 

coincides with standard momentum distribution function 
expressed in terms of the BWF in momentum represen- 
tation (8). Thus, the integrations of the Wigner function 
over either the configuration coordinate c or the momen- 
tum coordinate p gives the particle distributions in mo- 
mentum space and configuration space (z-projection and 

x’-projection of W(x,p+) ), respectively. These properties 
make the Wigner function to be quite similar to a classi- 
cal distribution function in phase space. Nevertheless, it 
is well known that it differs from classical distributions 
because there are some states for which it can assume 
negative values. The Wigner function for nonstationary 
quantum oscillators has been studied in [ll]. 

Eq.(S) has been integrated numerically for different com- 
binations of aberration strengths and the isodensity con- 
tours at 1, 2, and 3 u are shown in the first column of 
Fig. 1. In the second column the results from the tracking 
simulations of 700000 particles through the same devices 
are given, and the same density levels are shown. A quite 
good agreement can be observed for the contours at 1 and 
2 u, whilst, in particular for strong aberrations (note that, 
if we define the distortion by D = Az’(z = b,)/~r,r, K2 
= 0.06 me2 corresponds to D = 12.5 %, K2 = 0.12 mm2 
to D = 25 %, Ks = 1.2 mV3 to D = 4.2 %, and K3 = 2.4 
rnT3 to D = 8.4 %), the contours at 3 u show some notice- 
able discrepancies. This can be ascribed to the fact that in 
the periphery of the beam the Wigner function produces 
regions with negative phase-space density. Nevertheless it 
is worth noting that only 2 % of the particles are found 
beyond the contour at 2 CT, and only 0.01 % of them are 
beyond the contour at 3 u. As expected, because of (10) 
and (ll), the negativity pathology of the Wigner func- 
tion disappears in its integration over the two coordinates 
(i.e. in its z- and z’-projections). In the third and fourth 
columns of Fig. 1 these projections are shown compared 
with the histograms from the corresponding tracking sim- 
ulations, and the agreement is quite excellent. Instead of 
the Wigner function one could use the Q-function which 
is the diagonal matrix element of the density operator in 
coherent states representation, and, because of its positive- 
ness, it is widely used in quantum optics (see for example 
[12]). We will analyze the Q-function in TWM in future 
publications. 
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Figure 1: Comparison between Thermal Wave Model and Tracking Simulations (see text) 
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