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Abstract 

Random phcnomcnoms like coulomb scattering or 
synchrotron radiation increases the transverse emittance of a 
beam and can give a halo. Most of the analytical estimates of 
the effects are done by supposing a long transfer line (many 
betatron oscillations) and by taking into account the RMS 
part of the phenomenom (Gaussian model). A more general 
theory has been developped to calculate the real evolution of 
the particle density in phase space. It remains applicable if the 
phenomenoms are not Gaussian or if the beam line is short. 
In particular, the beam profile can be derived from this theory, 
showing that the Gaussian model must be corrected by a “halo 
function”. This function shows explicitly the influence of the 
transport functions and of the high order moments of the 
elementary phenomenom. Simulations confirm the theory. 

I. INTRODUCTION 

The problem of calculating a bean profile is well known and 
precise enough for most of the machines. For example, for 
electron storage rings. one can suppose, with a good 
approximation, that the beam is gaussian in any direction of 
the phase space. It is then possible to define a region 
containing, for example, 99.994% of the particules by taking 
4 standard deviations (or more) in the appropriate direction. 
Grosso nzodo, one can suppose that the beam density is 
Gaussian and that the “contribution” of the line, due to 
random phenomenoms, is also Gaussian. Then, the resulting 
density is also Gaussian in each direction. 
In this paper, we shall consider a transfer line where particles 
are subject to incoherent random phenomenoms like 
synchrotron radiation or coulomb scattering. We suppose that 
the input beam profile density no(x) is known, as well a the 
laws of the random phenomenom. We want to calculate the 
beam profile density at the line exit, namely, III(X). 

Mathematically speaking. we have to find a density function 
p, such as: 

nib) = 110 * px (x1 (1) 
where * denotes the classical convolution product. As they are 
probability density functions, we have also: 

-$oC3G = j$N = jod;W = 1 (2) 
01 

This study presents similarities with [l]. For Coulomb 
scattering, it can be compared to [2]. The main difference is 
that the aim of the calculations is to be more general than the 
calculation of ‘an equilibt.ium y/@ilc inside a storage ring. 
1Vora bene: it must be noted that the space available in these 
proceedings is to small to have complete and detailled 
calculations. These can be found in [3]. 

Let X be a vector in a n-dimension yhasc space and let K be 
also a n-dimension vector. For $ being a real function of X, 
WC define its Fourier transform by: 

$(K) = 1 eiKX g(X) dnX 
IR” 

(3) 

The Dirac function in a n-dimension space will be denoted 6. 
More generally, this paper will deal with distributions rather 
than functions, especially for Fourier transforms: for example, 
the Fourier transform of the constant function 1 is well 
defined and equal to 6. 

2. MATHEMATICAL MODEL 

2.1 Blettrettrwy cotiwibutioti 

- 
This study can be compared to [l] . Let h be the mean 
number of interactions per particle and per meter. Let D(X,s) 
be the probability density in phase space of the elementary 
phenomenom. On a elementary ds length, the number of 
interactions follows a Poisson law with a mean number of - 
interactions c = h ds. Consequently, the relative amount of 
particles which do not interact is: 

([O/O!) e-T = 1 - < = 1 -h ds (4) 
The proportion of particles having m (m>l) interactions is 
([In/m!) e-6 is in (ds)2 and is of higher order. So, if N is the 
beam density in phase space, we can write: 

N(X,s+ds) = N(s) * u(X,s) (5) 
where: 

u(X,s) = (1 - h ds)6 + hD(X,s) ds (6) 

The S function corresponds to the particles who did not 
interact. D describes one interaction. The integral of u over 
the whole space must be 1, as it is a probability density. If 
Tsts is the transport matrix of the perturbation (see 
2.5) from the s abscissa to the end of the line (abscissa S), 
then the clcmentary contribution of the segment [s,s+ds] is, 
transported at exit: 

-1 
us(X,s) = (1 - h ds)S + hD(Ts,,X,s) ds (7) 

2.2 Cotlrributiotl of the whole litw 

The total contribution of the line, taken at the exit, is the 
(infinite) convolution product of the us(X,s) densities. The 
simplest way to calculate it is to consider the second 
characteristics of us(X.s), which gives an integral over the 
whole line. By this way, if No is the entrance density in 
phase space, we obtain the density at exit Nlby: 

Nl(x)=No*p(x) (8) 
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wilh: Q(K) = cx i j(i$(K,s) - l)& (9) 
0 I 

and Do(X,s) = D$s+sX,s) (10) 
The second characteristics of p(X) is q(K) such as: 

S 

q(K) =h (&(K,s) - 1)ds (11) 

n 

The calculation of &K.s) is made with the variable change 
-1 

U = TstsX. The Jacobian a, = 1 detTs,, 1 is the oscillation 
damping factor from s to S. Then, if “-‘I denotes matrix 
transposition, we get: 

A A- 
DoKd = as WstsW (12) 

If we suppose that D is independant of s, we get finaly: 
S 

- 
q(K) = h 

d 
c&&tsK) ds - hS (13) 

In the following, we shall suppose c1,= 1. 

2.3 Beam profile 

We have got the density function p in phase space, which 
corresponds to the cmittance obtained after transport of a zero 
input emittancc. For X=[xl...x,,], the “generated profile” is 
the marginal density of p, namely px(x1) such as: 

+oo 
px(xl) = j p(xl.x~.Q dx2...dxn (14) 

.CX3 
Writing p as the inverse Fourier transform of a, and working 
with distributions rather than functions, we obtain easily: 

Px(xl) = & j &a,O,O,...) e-iaxl da (1% 
- .ca 

or: i&(a) = fWW...) (16) 
This gives a simple result : the second characteristics of the 
beam profile in xt is the second characteristics of the total 
density, where all the terms which do not correspond to xl (in 
the order of writing) have been made equal to zero. 

2.4 Developtuetlt of q>(kl) = qx(kl,O...) iti series 

Let us write X=[xl..xn] and K - [kl,..kn] . 

htsK) = J exp [iTS+,KX] D(X) dnX (17) 

IF? 

*],xim J (Tl lxl+...T,,lx,)mD(X)dnX (18) 

IF? 

3ml;GKl 1 dklm K=O 
= imc (Transport)(Momcnts of D) (19) 

So, we can write qx(kt) as: 
.!M-XY 8 -- 

. qx(k1) =-h c. 
iz c,, ktm (20) 

m=l 
We have shown the decoupling of the transport terms and of 
the moments of the fundamental interaction. According to 
2.3, only the terms kt (corresponding to xl) must be 
considcrcd. WC can Corgct all the others iC WC arc only 
intcrestcd by the profile along x1. 

If D acts along one particular direction xr (ex: synchrotron 
radiation, which gives only a random change of Ap/p, see 
2.5), only the moments 

Pm = J xr”’ D(X)d”X (21) 

IF? 

and the Trl terms appear, leading to: 

+oc 
Qx(kl) = i c i 111 m! Pm Tmrl klm (22) 

m=l 
For other phcnomcnoms like Coulomb scattering, D acts 
along the transverse x’ and y’ directions, but with the same 
law, leading to no loo much complicated results. 

15 E.ran@e: sychrolrow rudiadotr. 

We consider a structure like an electron recirculating 
accelerator (ex: ELFE arcs [4][5]) where synchrotron ndiation 
gives an emittance growth (no damping). 
Let us consider the (x,x’,Ap/p) space. The elementary 
phenomenom is a random change E of Ap/p only, x and x’ 
remaining constant. So. we can write: 

D(X) = 6,6x* E F 
( > (23) 

If 11 is the dispersion function, if the Uij terms are the 
transport functions, the transfer matrix of the yerurbaliotz is: 

“1, 42 rlu11+vJ12 

T= u,, 

[ 
42 7lh+7l’U22 

0 0 1 I 

(24) 

Supposing that the odd moments are zero and using formula 
(22). we obtain a generalization of 141. equation (25): 

ic- n 

Yx(kl) = : ($Jll+~‘U12)7-“‘dS v2,,,kt2= 

2.6 Beam profile nwdel 

We deal only with the contgbution of the line px. If the me!; 
number of interactions h=hS is low, the proportion X=e 
particles will not interact. So, px will not be a function but a 
dislribuGor2, as in 2.1: 

px(x) = x 6 + (1-x) cPfx> (26) 
whcrc Q is a probability density, From: 

ix(kd = exphdh)) = x + (1-x) $(h) (27) 
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we deduce that we must do the inverse Fourier transform of 
the function: 

&) = ~Vlclx(~l)l - x 
1-x (28) 

h 

x and qx being known. The inverse Fourier transform of ix 
cannot work from the numerical point of view. 

2.7 Inverse Fourier wamform. Halo jioxriou 

Let Qn(x) = ex2s e-X2 be the nth Hermite polynomial. 

Let hn(x) = e- x2/2 Qtl(x). These functions are invariant by 
Fourier transform, that is: 

-I-= 

,, eisx hn(s) ds = (-i)” & h,,(x) (29) 

02 
For qx(a) = - y a2 +..., it can be shown that the standard 

deviation of $ is given by o,+~ = (1-x) 02 and that: 

$(a) = ex - Qg a* + 3(a) 1 (30) 

and: 

which is a “normalizatio~r” of 6. Then: 

40) =&v($) (33) 

We develop @(a) on a H&mite polynomial basis: 

@,(a) = ? BnQn(a1 (34) 
n=O 

The orthogonality of Qn as well as: 
+oo 

j hn2(x)dx = 2” n! $%t (35) 

leads to: 
+oe 

I 
-a 2 

e @(a) Q”(a) da 

Pn = - 
2’1 II! 4-z 

(36) 

The numerator can be computed by quadrature [6] also by 
using Hermite polynomials. Then, we obtain (37): 

CW=$v(f-)= *v[- $718 (4” lLQt,($ 

If only the even terms are not zero, WC get (38): 

O(x) = --&ex4- $1 z (-11” PznQz,,($-) 

8 -- 

Wriling:Z(x) = c 
n=o 

and: s(x) = , Gaussian density (40) 

the contribution’ol’ the line to the profile density is: 

This gives the classical Gaussian contribution for large h. 
g(x) is a correction funclion of the classical formulation 

3. SIMULATION 

We have simulated an obvious non-Gaussian phenomenom in 
phase space (x,x’) where each interaction acts like a random 
change of x’ (uniform on a given interval) of odd moments 
zero. The transfer line is modelized by supposing an harmonic 
betatron oscillation. The input “beam” has a Dirac emittance 
(x=x’=0 for all pcu-titles). For X=0.5 interactions (mean value) 
and for one betatron oscillation only, we get the profile given 
figure 1, with a good precision up to 4 standard deviations, 
when the Gaussian model fails rapidly. 

-Theory 
-+-Simulation 
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Figure 1. Comparison of profiles 
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