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Abstract V//h 
Cold beam pipes as foreseen in superconducting hadron 
machines require shielding tubes with pumping holes 
called liner. As an extension of an existing rotational sym- 
metric calculation now a more realistic liner structure with 
rectangular holes is treated. The electromagnetic field of 
one rectangular hole with arbitrary dimensions is deter- 
mined by means of the residuum calculus in combination 
with orthogonal expansions. Numerical results are pre- 
sented for the longitudinal coupling impedance and com- 
pared to results obtained with Bethe’s small hole approx- 
imation. 

Figure 2: coaxial waveguide with a rectangular hole in the 
inner conductor 

1 INTRODUCTION 

In [I] as a preliminary consideration we have treated a 
coaxial waveguide with rotational symmetric interruptions 
in the inner conductor. 

Figure 1: scetch of a liner 

The solution was based on mode matching in trans- 
verse planes at the discontinuities. It is also possible to 
match the electromagnetic field on a surface with con- 
stant radius. But due to lack of boundary conditions 
in the longitudinal direction the fields are now repre- 
sented by a continuous spectrum of waveguide modes. 
Especially in the case of an inner conductor with van- 
ishing t,hitkness this method is more convenient. So we 
will use it here for the non rotational symmetric prob- 
lem of one rectangular hole in the inner conductor. Al- 
though we have restricted ourselves to one single hole the 
present analysis c.an be extended for any number of holes 
without fundamental problems. Adding holes equidis- 
tantly arranged and with the sarne longitudinal position 
the numerical evaluation will become more convenient 
because of additional symmetries. Holes with different 
longit,udinal positions wilt merely cause more CPU time. 

2 FIELDS IN THE DIFFERENT 
REGIONS 

Figure 2 shows a longitudinal and transverse cut of the 
structure under consideration including all dimensions. On 
the axis we assume a point charge Q travelling with veloc- 
ity of light which produces an exciting TEM-field. This 
reads in frequency domain 

~(“1 = E6e) = -f&e -jko , ho = w ‘p ‘% XT@ co Cl? 

Because of the inhomogeneous boundary the scattered 
fields have to be a superposition of TE- and TM-waves 
which can be calculated from scalar functions V and W: 

E = rot(e, V) - j 2 rot rot(e, W) , 

1 
H = rot(e,W) +j- 

Zoko 
rot rot(e, V) (2) 

with A(V, W) + ki(V, W) = 0 . Taking into account the 
symmetry and boundary condition at the outer surface 
e = a we find the following solutions of the wave equation 
in region 1 and 2 respectively 

If(‘) = ZoQ ,sin(7nu)~~)(lcZ)~~(~~) e -j’=’ dk, 

@‘) II Q cos(mp)G(‘)(k,)J,(X~) e -jkSz dk m * 

sin(m~)F~)(lc,jR,(Xp)e-jk~* dk 2 
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COS(mcp)G(2)(k,)sm(&.g e -jksz m dk I 

with 
X2 = k,2 - k,Z 

(3) 

Sm(b) = Jm(h?)~V,(~~) - 4n(.Q)Jm(~a) ) 

where Jm, N,, Jk, N’ are the Bessel- and 
Neumann-functions and their Derivations and F~)‘(2)(k1)1 

G:)‘(2)(k,) th e searched for spatial spectrum. 
In the aperture there are various possibilities to describe 

the tangential electric field. One of them is to split the 
aperture in M x A; elements and to approximate the fields 
in each element using simple, e.g. pulse- or triangle-shaped 
functions P(<, r)) 

E~‘=~~Q”~Blrup(~-zu,ip-‘py). (4) 
P,V 

Especially for pulse-shaped functions the necessary inte- 
gration in the complex plane described below becomes 
more convenient. For cy = 27r, i.e. E, (b) = 0, this choice 
turns out to be very efficient. In this case one already gets 
for M = A’ = 1 results comparable with [I]. 

Another way is to use trigonometric functions in the 
aperture: 

w(“~(z, ‘p) = Q c A,, ~0s PP - 1h cos vaz 
cy 

P,” 9 

al/(*) - = Z,Q c Blrv sin (2P a’)=‘sin y . 
de 

(5) 
F>V 

This expansion is more suited for the 3 dimensional case 
u # 27i. Vanishing of E, at the edges 1~1 = (~12 and of 
E, at the edges z = O!g is included. If we exchange the 
eigenvalues 2~ - 1 with 2~ we get also a complete field 
expansion. This choice is more suitable for the limiting 
case ff -+ 2~. 

3 FIELD MATCHING 

Performing the inverse Fourier transformation the bound- 
ary condition of the tangential electric field at Q = b yields 

where we have introduced the following abbreviations: 

& = B,, + &:(“/I - I)%,, 
{ 

, 
9 

’ 
s/ 

z 
Ceg,(m, lit) = 

0 0 
’ cos (2p ;I),, x 

VTi? 
x~~s-----cosmpej~~~d;pd~ ) 

9 

f sin ‘2’ - l)ncp x 
a 

x sin T sin mcp e jkzr dp dz . 
9 

Similiar formulas are valid for F?) and Gg’. Matching 
the magnetic field results in the following system of linear 
equations: 

C{ Ap”M;;,p’“’ + BpyM;;,p/vf) = rp’“’ 
P,V 

XI A,“M;:,,,., + Bp”M;L,2,pr”I = 0 > (6) 
Pa” 

I?,,ju, is calculated from the exciting magnetic field. The 
matrix elements MLf, Pjuj can in principle all be expressed 
in terms of the follo;ing integrals: 

I” = If - (-)“I,” = 

m 
= 

s ( 
f,(k,)e-jkzz - (-)vfv(kz)eJ’z(g-“)) dk, (7) --co 

Im&, I 

qy:; 

I 

Fc$= l jmk, 
c ~&,,,Gepy(m, k,) + 

Figure 3: integration in the complex plain 
r2XJ,!,,(Xb) X2b(l + 6r) ir,u 

If we close the integration path as shown in Figure 3, 
these integrals can be solved using the residuum calculus. 

+ c ~pvSepu(m, k,) 
The functions ,fv(m, k,) essentially contain ratios of linear 

P,U combinations of Bessel functions and due to lack of place 

G$) = jko 1 
cannot be discussed in detail here. The location of their 

c ApvCepv(m, k,) 
+X2(1 + 6r) Jm(Xb) ir ” 

poles is shown in Figure 3 assuming small dielectric losses. 
Furthermore we have to take into account the poles *VT/g 
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located on t,he real axis. So an arbitrary solution of (7) can 
be written as: 

L(m, z) 1 --=-..-.--~ 
hj 1 + 6; 

XCOS~{*, (m,ii;‘> +qv (m,--y)}- 

-jsiny{b, (m,:) -9, (m)--y)}+ 

+ C {\kru(m,pi)e-JP~z + (-)VfP,(m, -pi)e-jp~(g-s)} 
i 

(8) 
with 

Wm, 8) = )jtr,(kz - v)fv(m, k,) 

4 THE LONGITUDINAL COUPLING 
IMPEDANCE 

After truncating the infinite system (6) we get the Fourier 
coefficients for the tangential electric apert,ure field. It can 
easily be shewn that, the longitudinal coupling impedance 
is given by 

Z(w) - = +~a~jiL&Ly-)v~~g-l 20 (9) 
tiu c 1 ” -p 9 0 

with Z0 = a. As expected for a stable numeric solu- 
tion the ratio of p and m of the azimuthal field dependence 
has to correspond to the ratio (~12~. 

Figures 4-7 show for different angles a t.he real and imag- 
inary part of the impedance. As expected for small holes at 
lower frequencies the imaginary part is much greater then 
the real one and goes linear with frequency. Assuming 
a circular hole with about, the same cross section Bethes 
theory of diffraction by small holes gives the impedance 

PI: 

2 25 j 6.R:: , T : radius of the hole 

For CY = 10” we choose r = g/,/% and obtain 

Z(k0 = 0.2mm-‘) = jO.024 

This value agrees very good with Figure 4. Increasing 
the angle ct’ (Figure 5-7) the behaviour of the impedance 
more and more looks like in the limit LY = 2a in [l] except 
for low frequencies. For (x = 350” we have an inductive 
low frequency behaviour which differs from the capacitive 
impedance for cr = 360”. where the inner conductor is 
completely divided. 

a=Zlmm 
b=l&nm 
g= 3mm 
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ko [mm-‘] - 0.2 
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0. 

Figure 4: impedance for cy = 10’ 
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Figure 5: impedance for a = 180” t a= 3500 
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Figure 6: impedance for cy = 350’ 
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Figure 7: impedance for cy = 360” 
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