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Abstract 
The wakefield driven in a conducting pipe by a coasting, 
relativistic, charged particle beam has been widely studied, 
most of the time thanks to computer codes. In the particular 
case of a cylindrical “pill box” cavity, analytical expressions 
of the (E,B)(x,f) map have been obtained as developments on 
the complete base of cavity normal modes. We extend this 
method to the case of an accelerated beam, which leaves the 
downstream face of the cavity with a thermal velocity, and 
reaches the opposite face with a relativistic velocity, a 
situation encountered in photoinjectors. According to the 
relative values of the accelerating field and of the cavity 
geometrical parameters -radius, gap- causality allows to 
introduce various simplifications. Results are compared to 
those obtained elsewhere [1] by a direct resolution of 
Mawxell’s equations based on transform and Green’s function 
techniques. 

1 INTRODUCTION 

Wake fields have been widely studied for coasting charged 
particle beams propagating inside a conducting cavity. In the 
case of an ultrarelativistic beam, the field directly generated 
by beam particles in their wake can be neglected, and the so- 
called wakefield is the electromagnetic linear response of the 
cavity to the exciting signal which is the beam. For a 
transrelativistic beam, the direct field must be taken into 
account and added to cavity response, which is no longer 
linear, except for a low-intensity beam. Wakefield effects, 
often limited to the global effect on the beam of the cavity it 
has crossed, have been studied for various cavity geometries, 
most of the time thanks to computer codes. In the particular 
case of a cylindrical “pill box” cavity, analytical expressions 
of the (E,B)(x,t) map have been obtained as developments on 
the complete base of cavity normal modes. 

We extend this method to the case of an acccleratcd bcarn, 
which leaves the downstream face of the cavity with a 
thermal velocity, and becomes relativistic in a few cm, a 
situation encountered in photoinjectors, where the 
accelerating field is the E-field of an RF cavity. 
In numerical applications, the considered photoinjector will 
be the first one of the ELSA facility [2] (CEA, Bruyeres-lc- 
Chatel), schematized in Fig. 1 of the companion paper 131, 

which works at 144 MHz. For this frequency, the E-field may 
be considered as constant for beam pulse lenghts of the order 
of 100 ps or smaller. 

2 STARTING EQUATIONS. MODELLING 

They are the same as in the companion paper [ 1] to which we 
refer the reader for details on initial and boundary conditions. 
In brief, we solve Maxwell equations for potentials, in 
Coulomb gauge : 
A@= -P/E,,, U.4 =paj-(1/c2) (d/dr)VQ, in the cylin- 
drical cavity 2, : 0 < z I g ; 0 5 r 5 i. Due to causality 
prescriptions, this very simple geometry is a good 
photoinjector model for wakefield studies [3] 

The source terms : (H : Heaviside) 

P(r,z,t)= ‘m(z’*) 
7ra2p( z)c 

[I - H(r - a)], 

j(r,z,t)=p(z)cp(r,z,t) u, 
describe a radially uniform beam (radius a), of velocity 
v(z)=~(z)c, with an arbitrary longitudinal current profile 
WJ). 

3 MODAL ANALYSIS 

The formalism is the same as the one which has been widely 
used in studying wakefields of coasting beams. Solutions are 
sought out as developments : 

A(w) = Cqa Oh(x), @b,f)=CrA(t)(Patx) 
a a 

on the two complete bases formed by : 
l the solutions q,(x) of Helmola’s scalar equation: 

A@ + K,‘@ = 0, 

for the prescribed boundary conditions on @ 

l the solutions a (x) of Helmoltz’s vector equation 
AA + K& = 0, 

for the prescribed boundary conditions on A. 

cp,(x) and a,(x) are well known for the considered 
(O,X)x(O,g) cylindrical cavity : 
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cp 
“+P 

(x)= cp J (j L)sin(e) DO n 
z- 8’ 

a n,p(~)=ao {FJ,(jn$)sin(y)ur + 

(qO et a, : arbitrary amplitudes, functions of the injected HF 
power) ; J : Bessel ; u,, u, : unit radial and axial vectors. 

On the other hand : 

where n =1,2,3,. . .; p =0,1,2,. . . j, is the nth zero of Jo. 

As for the coordinates rh(f) of CD and Q(I) of A, a 
classical calculation [4] links them to source terms p(x,f) and 
j (x4 by : 

where : 

. . 2 
Ya+w7a=211, 

‘I* J.a, d3x 

1 I r -- 
‘-2T, P ‘~a d3x, 

U, =Fjai d3x, 

T, =?j(VqQ2d3x . 

For the considered cylindrical cavity : 

4, = (J”)2 + (LIE)2 
K g 

T 
“SP 

= + rp,2 J;(j,) [($)’ +(yj2] 

n&OR28 2 2 
un,, = - a 

4 
J (J )[(J’)2 +(E)‘] 01” 

R 8’ 

4 A IJRIEF OUTLINE OF CALCULATIONS. 
ANALYTICAL RESULTS 

4.1. A brief oulline of calculations 

The generalized coordinates : ri (t) of @ and qn (t) of A, are 
first calculated from the above quoted formula: through 
Green’s function methods. Then, from the rebuilt potentials, 
the longitudinal (irrotational) l?,, = -V@,, and transvcrsc 
(solenoidal) E, = - dA/dt , components of the clcctric field, 
as well as the magnetic field B arc deduced. According to 
symmetries, the only non-vanishing components, in 
cylindrical coordinates, are : E,, E,, and B,. 

Analytical expressions of these fields appear as double 
sums over the radial n, and axial p indices . 

For E,,, summation over one of both indices is possible 
owing to the properties of Bessel functions and Dini’s scrics 

for n, of Fourier series for p. ForE, and B,, double 
summation cannot be avoided. 

4.2. Analytical results 

Though an arbitrary axial current profile can be handled, we 
restrict the following results, for sake of simplicity, to a beam 
pulse of time lenght z , with stiff front- and back- profiles. 
Reduced coordinates and quantities will be used, based upon 

the characteristic lenght H-’ = mc2/eEo, where e and m 
are the electron charge and mass respectively, and E,, the 
RF-electric field amplitude on the photoinjector cathode : 
R=Hr, Z=Hz, p=Hx, G=Hg ; T=Hct, T=Hcr. 

a) Longirudinal E-field ; summation over p 

_ Jo (j, :I J, (j, %I 
Eli (R,Z,T) = - C 

?r 
.-. 

q)cpa “Z, j, J?(L) Wi, F) 

f ch[j. 7 ] Tsh[$(m-1)] du+ 

du 

E,,,(R,Z,T)=~ 
_ J:(.LR)J,(jnA) 

Ir&&Up 2 jpJ2(j ) ’ *G n 1 n SW, 7) 

{ sh[.L~] o Tsh[+(&-&)] du+ 

du 

6) Longitudinal E-jeld ; summation over n 

(I,K modified Bessel functions ; k=n/G) 

E,,,(R,Z,T) = -i_T. 5 codkpz). 
mocA g p=, kp 

i sin[kp(m-1) du 
mrx(O,T-7) 

Ko (PIP) K,(Akp)+- 
I,(/@) 

I,(Akp) OIRSA<p 
1 

Ko (pkp) K, (Rkp) - - 
1, (pkp) 

I,(Rkp) 1 01 AIR<p 
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Ii(Akp) O<R_<A<p 1 
-&(Rkp) OlAlRlp 1 

c) Transverse E-field and magnetic field I3 = 6, ue 

Expressions differ depending on whether the considered point 
is inside the beam, upstream or downstream. For a point 
located inside the beam : 

o Jdi, ;) Jl(j, :I 
EzL(R,Z,T)= -41 C 

~&o&v’ ,,=I j,J?(j,) ’ 

II 
+ ~(&-h, cos[$(T-u)]dn 

0 

&J--l,] cos[b(T-ii)] du] 
7 

m ji cos(kpZ) 
+c 

p=~ b4.i; + (pkp121 * 

[ 
jcos[Jwy I sin[kp(m - l)] du - 
0 

I sin[kp(dx - l)] du 

EJR,Z,T)=s 2 
J,(j,,fI Jl(jnp) 

w,cAg ,,=I J?(L) * 
sin(kpZ) 

z ji +(pkp)2 * 

i 
jcos[JMy ] sin[kp(m - l)] du - 
0 

1 sin[kp(da-l)] du 

R A 

4Pol 
o JlU,, -1 Jl(j, -) 

&(R,Z,T)=- c p 
n%P n=l j,, J?(L) 

P. 

j(m- I)] sin[$-(T -u)]du 
0 

-~(~~-I)] sin[$-(T-n)]drr 
7 

2 j,, cos(W) 
P=I kpJ= * 

1 

I 
T 
Jsin[ JIG&7 
.O 

71 sin[kp(m -l)] du 

-jsin[ JMTFu 
7 

p] sin[kp( Jg - I)] du 1 
5 COMPARISON WITH THE WAKEFIELD 

EXPRESSIONS OBTAINED IN [I] 

The agreement is excellent. As an exemple, Fig. 1 shows the 
E, -wakefield on the axis, as a function of Z=Hz, for f=t,/2, 
where f, is the time at which the beam head reaches the cavity 
exit. 
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Fig. 1. On an exemple : comparaison between the results of the 
presen: method and he one of the integral method [I] 
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