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Abstract 

The fields in periodic and nonperiodic accelerating struc- 
tures with arbitrary conductivity and permittivity are cal- 
culated. In the case of periodic structures, the fields in 
a rectangular structure are found by mode matching at 
a plane surface y = const.; In the nonperiodic case, the 
field of an rotational symmetric structure is found by mode 
matching at planes z = z,. Fields are shown for structures 
with copper walls and dielectric walls. 

1 ROTATIONAL SYMMETRIC 
STRUCTURES 

The analysis of rotational symmetric structures with losses 
is in principle the same as the analysis of structures with- 
out losses. The main difficulty is the calculation of the 
propagation constants in a volume with different permit- 
tivities. 

Consider a tube of radius b filled with two different ma- 
terials: for Q < a a material with E = Ed, p = ,u~, for 
n < Q < b a material with E = ~2, p = ~2. The outer 
wall at Q = b is infinitely conducting. By allowing a com- 
plex permittivity Ei = EO(E,, - &--) the case of conducting 
materials can be treated this way also. 

The transverse magnetic field in this tube can be de- 
scribed in the case of no azimuthal dependence as a sum 
of modes indexed with j in the areas i = 1 and i = 2: 

kf = L.J’/L,E~ 

gij = c?+, k-f R,i ( pqij) .Zij (pj z) 

&j = ~~jwR.,(enij)~Z~,(p,z) 

For the inner area 1, the function Rlj(~plj) is just the 
Bessel function J~(QQ~), for the outer area 2, R23(~q23) 
is a linear combination of Bessel and Neumann functions 
&(), &() to satisfy the boundary condition at e = b. 

Jo(bqzj) 
Rzik??zj) = JO(N2j) - yo(@42j)------- Yo (hi) 

The function 20 (pj z) is a linear combination of exponen- 
tial functions describing the exponential growing or decay- 
ing waves: 

Zi, (PjZ) = A+je +jP,z + B .e-.blz 
13 

The continuity requirements for the tangential fields at 
p = a lead to a homogeneous equation for the propagation 

constants p, = W2/LlEl - q1j = 
determinant reads: 

LJ~/J~EZ - q2j whichs 

From the solution of this transcendental equation the ra- 
tios il,j/A,j, B,jfBzj CXI be calculated. 

Fig. 1 shows a part of the relief of this determinant as 
a function of q2j for a structure with copper walls. This 
determinant is a analytical function and therefore the min- 
ima of its relief are zeros of the function itself, 
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Figure 1: Relief of log(1 t- IDet(qzj)l) in the complex plane 

In a st,ructure with crossectional jumps, the fields left 
and right of the plane z = t, of the jump have to be 
matched. 

Now the fields get another index: Bj,, I&, for the j.th 
mode in the area .z,-] < z < z,, the index i for the 
different radial dependency on the material is dropped. 

We expand the boundary conditions at such a plane z = 
z,, in orthogonal functions B,!,, Es,,: 

0 = HJZ = 2, - 0) - Hv(z = 2, + 0) 

0 = E,(z = z, - 0) - E,(z = z, + 0) 

*o = -g J( Bc-1 B,,n > Es,,-ldA j=l !-b-l Pn 
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0 = 2 / (Ej,n-1 - Ej,n) Bs,ndA 
j=l 

These are an infinite set of linear equations for the un- 
known amplitudes A13,n, Blj,n, Setting one of these to a 
nonzero value transforms the linear equation to an inho- 
mogeneous that can be solved after truncation. 

The above method was applied to structures with di- 
electric walls and conducting walls. Fig. 2 shows the field 
in a structure with 4 cross sectional jumps where a wave 
is incident from above. The inner material is vacuum, the 
outer material has a permittivity of E, = 5.1. 

Figure 2: Field pattern in a tube with dielectric walls 

2 RECTANGULAR STRUCTURES 

In order to explain the principle of our analysis in an easy 
way as a first and very simple example we treat an ar- 
rangement of two resonators coupled by an iris with finite 
conductivity (Figl). 

The basic idea to solve the given boundary value prob- 
lem is to use complex orthogonal functions, the eigenvahres 
of which are solutions of a complex transcendental equa- 
tion. 
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Figure 3: Two iris coupled resonators and electric field 
pattern for kca = 1.73956 

For simplicity but without loss in generality we first con- 
sider a two dimensional problem independent of the coor- 
dinate 5. Furthermore we assume a current sheet ib ez 
in the plane y = 0 producing an exciting electromagnetic 
field which reads in frequency domain 

H(“) _ 4 cm ko(Y - a) ib sin kc (3, - u) 
z 2 cos koa 

, Eie) = jZoT 
coskaa ’ 

(1) 
with ko = W/Q and 2c = 

v’ 
2. To describe the secondary 

field due to the iris we separate t,he whole region into three 
sub-regions and obtain in region 1 using a compact matrix 
notation 

Hi’) = FT(z) sin( + HL”) 

E!‘) = jZcFT(z)$ cos(Ay)A + .Epi (‘4 

F(z) is a column matrix with elements cos(Cra/l), L = 
g+d, A a diagonal matrix with elements Xp = ki - (ivr/L)’ 
and the column matrix A contains constant values ‘4; at 
present unknown. 

For region 2 and 3 we define common eigenfunct,ions in 
the form 

G(z) = COSPJ~Z/ cospaid 
COSPOi(Z - L)/ cospo,g 

and the electromagnetic field reads 

Hp,3) = GT(z) cos Q(y - b)B 

f Ep,3) = -jZokoGT(z) 21;:; SinQkb)B , 
O<z<d 

0 
rt 7 z 2 L 

- - 

(4) 
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where k,2 = ki - jkoZotc and the diagonal matrix Q con- 
tains the elements qf = ki - pi, = ki -p&, 

From the continuity conditions at z = d it can easily 
be shown that the complex eigenvalues poi and pzi are 
solutions of the following transcendental equation 

(1+y){1-v”w”}+(1-y){&??}=0, (5) 

where 

u = ejmcg w = eh,d, y _ k,2P2s 
k; PO; ' 

For the limiting case K. -+ cc the solution of (5) is given 
by two sets of eigenvalues 

PO4 = i7r , paid = (2i - 1)7r/2 

which we can use as starting values. The first set cor- 
responds with eigenfunctions mainly concentrated in re- 
gion 3 and the second one corresponds with eigenfunctions 
mainly concentrated in region 2. 

In order to determine the unknown coefficients Ai and 1.739 i.746 

B; we have to fulfill boundary conditions at y = a. Per- 
forming the necessary orthogonal expansion we make use Figure 4: Absolute value of the impedance in the vicinity 

of the orthogonality of the eigenfunctions G,(z), i.e. the of resonance 

following integral produces a diagonal matrix N 

k; ’ 
L 

z J G(z)GT(z) dz + J G(z)GT(z) dz = N. L . (6) 

0 d 

Expanding now the magnetic field in region 1 in terms of 
the eigenfunctions Gi(z) and the electric field in region 
2,3 in terms of the eigenfunctions F,(z) we finally get an 
infinite set of linear equations determining the unknown 
coefficients. 

For the numerical evaluation we define a characteristic 
impedance 

L 

2 = - J EL’)(O,z) ejkilz dz , 
1 ib = - 

W 
(7) 

0 

shows the absolute value of 2 in the vicinity of reso- 
nance koa = 1.7396 for copper with K. = 55. 104/Rcm 

where w is the z-dimension of our structure. 4 

r l, 

/- 
Fig.2 1’ 
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1’ 
and 20 = a = 2d = lcm, b = g = 2cm. The resulting 
Q-value is 29000. .4s shown in Fig.3 the Q-value grows 
linear with fi. This behaviour is the same as expected 
from a power loss calculation. 
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Figure 5: The Q-value as a function of K 
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