Trapped Modes In Waveguides with Small Discontinuities

Sergey S. Kurennoy
University of Maryland, Physics Department, College Park, MD 20742, USA

Abstract

Trapped modes are studied in a waveguide with many small discontinuities, which is a good model for the vacuum chamber of large accelerators. Frequencies of trapped modes and their resonance contributions to the coupling impedance are calculated.

1 INTRODUCTION

It has been demonstrated recently [1] that a single small discontinuity (such as an enlargement or a hole) on a smooth waveguide results in the appearance of trapped electromagnetic modes with frequencies slightly below the waveguide cutoff frequencies, and that narrow resonances of the coupling impedance near the cutoff can be attributed to these trapped modes. This phenomenon could be dangerous for beam stability in large superconducting proton colliders like LHC, where the design anticipates a thermal screen (liner), with many small pumping holes, inside the beam pipe [2]. In such structures with many small discontinuities and high wall conductivity due to inner copper coating, the trapped modes can contribute significantly to the coupling impedances.

2 A SINGLE DISCONTINUITY

We list some results from [1]. In a cylindrical waveguide with perfectly conducting walls having a small axisymmetric enlargement at $z=0$, with characteristic dimension much smaller than the pipe radius b, there is a solution of the Maxwell equations with frequency Ω : slightly below the cutoff frequency $\omega_{1}=\mu_{1} c / b$ (μ_{m} is the m th root of the Bessel function J_{0}). Far from the discontinuity (in fact, for $|z|>b)$ the fields of the TM trapped mode are

$$
\begin{equation*}
\varepsilon_{z}^{(1)}=\left(\mu_{1} / b\right)^{2} J_{0}\left(\mu_{1} r / b\right) \exp \left(-k_{1}|z|\right) \tag{1}
\end{equation*}
$$

and $\mathcal{E}_{r}^{(1)}, \mathcal{H}_{\theta}^{(1)}$ with corresponding radial behavior. The "propagation" constant $k_{1}=\sqrt{\omega_{1}^{2}-\Omega_{1}^{2} / c}$ is

$$
\begin{equation*}
k_{1}=\mu_{1}^{2} A / b^{3} \tag{2}
\end{equation*}
$$

where A is the area of the cross section of the enlargement in the $r z$-plane. Note that A enters Eq. (2) with its sign; eg., for an iris that protrudes into the pipe, A would have a negative sign, and solution (1) would not exist. We assume from the beginning that $k_{1} b \ll 1$. So, the trapped mode is spread along the axis of the pipe over the long distance $l_{1} \equiv k_{1}^{-1} \gg b$. From (2) frequency shift $\Delta \omega_{1}=\omega_{1}-\Omega_{1}$ is

$$
\begin{equation*}
\Delta \omega_{1}=\omega_{1} \mu_{1}^{2}\left(A / b^{2}\right)^{2} / 2 \tag{3}
\end{equation*}
$$

For the case of a finite, though large, conductivity of the walls, the trapped mode exists only if damping rate γ_{1} is smaller than $\Delta \omega_{1}$, i.e. when $\gamma_{1}=\omega_{1} \delta /(2 b)<\Delta \omega_{i}$, where $\delta=\sqrt{2 /\left(\mu \mu_{0} \sigma \omega_{1}\right)}$ is the skin depth in the pipe wall.

This trapped mode produces a narrow resonance of the longitudinal coupling impedance with the peak value

$$
\begin{equation*}
R_{1}=\frac{4 Z_{0} \mu_{1} A^{3}}{\pi \delta b^{5} J_{1}^{2}\left(\mu_{1}\right)} . \tag{4}
\end{equation*}
$$

It was shown that a small hole in the pipe wall also creates localized axisymmetric trapped modes. Results for an enlargement remain valid for the hole if we substitute $A \rightarrow \alpha_{\theta} /(4 \pi b)$, where α_{θ} is the magnetic susceptibility of the hole, in Eqs. (2)-(4). A similar study has been performed for higher-order and TE waveguide modes, and the existence of trapped modes was also demonstrated [1].

3 MANY DISCONTINUITIES

Consider an axisymmetric waveguide with N small enlargements located at z_{i} and having areas A_{i} of the longitudinal cross section, $i=1,2 \ldots, N$. In this structure, we look for a solution of the Maxwell equations with frequency Ω below the cutoff ω_{1} in the piece-wise form (the radial behavior is given by Eq. (1)): $a_{i} e^{k z}$ for $z<z_{1}$, $a_{n+1} e^{k z}+b_{n} c^{-k z}$ for $z_{n}<z<z_{n+1}$, and $b_{N} e^{-k z}$ for $z>z_{N}$, where $k=\sqrt{山_{1}^{2}-\Omega^{2}} / c>0$, and a_{i}, b_{i}, are amplitudes to be determined. We assimee $k b \ll 1$ and enlargements are separated by distances larger than the chamber diameter, so that one can neglect higher modes.

To find the eigenfrequency of the trapped mode we use continuity conditions and the Lorentz reciprocity theorem, e.g. [3]. It gives $2 N$ simultaneous homogeneous equations for $2 N+1$ variables (a_{i}, b_{i} and k). The condition for the solutions for a_{i}, b_{i} to exist, i.e. the determinant of the matrix in the LHS to vanish, gives an equation for k, which can be written recurrently for any N. In notations $y_{i}=d_{i} / x$ with $d_{i}=\mu_{1}^{2} A_{i} / b^{2} \ll 1$ and $x=k b$, Eq. (2) for $N=1$ becomes $1-y=0$. For $N=2$

$$
\begin{equation*}
D_{1,2}(k) \equiv\left(1-y_{1}\right)\left(1-y_{2}\right)-e^{-2 k g_{1,2}} y_{1} y_{2}=0 \tag{5}
\end{equation*}
$$

where $g_{i, k}=z_{k}-z_{i},(k>i)$, is a longitudinal distance between i-th and k-th discontinuities. Similarly, for $N=3$

$$
\begin{equation*}
D_{1,3}(k) \equiv D_{1,2}(k) D_{2,3}(k)-e^{-2 k g_{1,3} y_{1} y_{3}}=0 \tag{6}
\end{equation*}
$$

By induction, for $N>3$ discontimuities

$$
\begin{gather*}
D_{1, N}(k) \equiv D_{1, N-1}(k) D_{N-1, N}(k)- \tag{7}\\
\sum_{m=2}^{N-2} D_{1, m}(k) e^{-2 k g_{m, N}} y_{m} y_{N}-e^{-2 k g_{1, N}} y_{1} y_{N}=0
\end{gather*}
$$

Figure 1: Ratio k / k_{1} versus g / l_{1} for symmetric and antisymmetric (dashed) modes. Thick points show numerical results.

$3.1 N=2$

Let us introduce new variables: $\rho=A_{2} / A_{1}>1$; $d=\mu_{1}^{2} A_{1} / b^{2} ; u=x / d=k / k_{1}$, and $r=g d / b=g / l_{1}$, cf. Eq. (2). Then Eq. (5) takes the form

$$
\begin{equation*}
(u-1)(u-\rho)-\rho \exp (-2 u r)=0 \tag{8}
\end{equation*}
$$

There are two positive solutions: u_{s}, which exists for any $r>0$, and decreases asymptotically from $\rho+1$ at small r to ρ when $r \gg 1 / \rho$; and u_{a}, which exists only for $r>(\rho+1) /(2 \rho)$, and increases from 0 to 1 with r increase. The asymptotic values ρ and 1 correspond to the two independent trapped modes for the two far separated discontinuities; see Eq. (2). For two identical discontinuities, $\rho=1$, the factorized equation is

$$
\begin{equation*}
[u-1-\exp (-u r)][u-1+\exp (-u r)]=0 \tag{9}
\end{equation*}
$$

and both its solution tends to 1 at large r, see Fig. 1. Solution u_{s} gives symmetric fields, and u_{a} antisymmetric ones, i.e. fields are zero in the midpoint betwoen the two identical enlargements, Fig. 2. The behavior of u_{s} at small r is easy to explain: two close enlargements work like a single one with area $A=A_{1}+A_{2}$. It corresponds to $u_{s} \rightarrow \rho+1$, when $r \rightarrow 0$.

We have calculated numerically the lowest eigenfrequencies in a long cylindrical resonator with two small pillboxes using the code superfish [5]. To exclude the influence of the side walls, one has to choose length L of the resonator to be large, $L \geqslant l_{1}=b^{3} /\left(\mu_{1}^{2} A\right)$. We used $b=2 \mathrm{~cm}, A_{1}=A_{2}=0.18 \mathrm{~cm}^{2}, g=1-20 \mathrm{~cm}$ and L from 40 cm to 100 cm . Fig. 1 shows that numerical and analytical results are in good agreement.
The resonant contributions of trapped modes to the coupling impedance can be calculated as for a cavity with known eigenmodes; e.g. [4]:

$$
\begin{equation*}
R_{2}=R_{1} u^{3} \frac{u(1+\rho)+2 \rho\left[\exp (-u r) \cos \left(\mu_{1} g / b\right)-1\right]}{u(1+\rho)+2 \rho[\exp (2 u r)(1+u r)-1]} \tag{10}
\end{equation*}
$$

where R_{1} is the impedance for a single enlargement with area A_{1}, cf. Eq. (4), and $u=u(r, \rho)$ is a solution of Eq. (8). For small r the ratio R_{2} / R_{1} tends to $(1+\rho)^{3}$ for

Figure 2: Electric field lines for symmetric (top) and antisymmetric (bottom) trapped modes.
the "symmetric" solution u_{s}. For large distances, R_{2} / R_{1} becomes ρ^{3} for u_{s} and 1 for u_{a}. There are some oscillations at intermediate distances. For two identical discontinuities, $\rho=1$, ratio R_{2} / R_{1} at large distances becomes $\left(1 \pm \cos \left(\mu_{1} g / b\right)\right)$. While the sum of the impedances is just twice the impedance of a single enlargement, there are strong oscillations for each of two modes.

$3.2 \quad N=3$

We condsider only the case of three identical equidistant discontinuities, i.e. $d_{i}=d, i=1,2,3$ and $g_{1,2}=g_{2,3}=g$. Equation (6) transforms into

$$
\begin{equation*}
(1-y)\left(u-1+e^{-2 u r}\right)\left[(u-1)^{2}-(u+1) e^{-2 u r}\right]=0 \tag{11}
\end{equation*}
$$

The second brackets give an antisymmetric mode for two enlargements separated by $2 g$, cf. Eq. (9). The square brackets give two symmetric trapped modes: $u_{s 0}$ corresponds to fields without nodes, exists for all $r>0$, and tends to 3 at small r; and $u_{s 1}$, which exists only when $r>3 / 2$ and has fields with 2 nodes. All three solution goes to 1 at large distances between discontinuities.

The impedance for the symmetric modes is

$$
\begin{equation*}
R_{3}=R_{1} u \frac{\left(e^{u r}(u-1)+e^{-u r}+2 u \cos \left(\mu_{1} g / b\right)\right)^{2}}{3 u+1-e^{-2 u r}+4 u r(u-1)} \tag{12}
\end{equation*}
$$

At small distances, R_{3} / R_{1} goes to $3^{3}=27$ for $u_{s 0}$. At large r it oscillates as $\left(1 \pm \sqrt{2} \cos \left(\mu_{1} g / b\right)\right)^{2} / 2$ for $u_{s 0}, u_{s 1}$, see Fig. 3. In spite of the oscillations for each of the trapped modes, the sum of the impedances becomes just triple of that for a single discontinuity at large spacings in which case all three modes have the same frequency, Eq. (3).

3.3 Many Identical Discontinuities

In the case of N identical equidistant enlargements equation (7) can be factorized in the form

$$
\begin{equation*}
(1-y)^{N-2} P_{n}(y) P_{m}(y)=0 \tag{13}
\end{equation*}
$$

where $n=m=N / 2$ for even N and $n=m+1=(N+$ 1) $/ 2$ for odd N, and $P_{j}(y)$ are polynomials in y of the power j except exponential dependence on $u=1 / y$ in their coefficients, cf. Eqs. (9) and (11). Equation $P_{n}(y)=0$ has up to n positive solutions corresponding to symmetric trapped modes. The actual number of the roots depends

Figure 3: Ratio R_{3} / R_{1} versus $g / l_{1}: s_{0}$ solid, a dashed, and s_{1} dash-dotted line.
on the distance g between discontinuities. For any g there is at least one solution, and it behaves like $y \simeq 1 / N$ at small distances, i.e. $k \simeq N k_{1}$, because $P_{n}(y) \rightarrow 1-N y$ when $g / l_{1} \rightarrow 0$. This solution corresponds to the maximal symmetric trapped mode, without nodes. It always has the largest frequency shift, i.e. the lowest frequency between all the trapped modes, and the impedance N^{3} times that for a single discontinuity, Eq. (4), when $g / l_{2} \rightarrow 0$.

Equation $P_{m}(y)=0$ gives up to m solutions corresponding to antisymmetric trapped modes. At large distances, when $g / l_{1} \gg 1$, the asymptotics of $P_{j}(y), j=n, m$, are $(1-y)^{j}$, and there are $N=n+m$ solutions of Eq. (13) which asymptotically tend to 1 .

4 PERIODIC STRUCTURES

4.1 One Discontinuity per Period

Consider now periodic arrays of discontinuities. We assume that the period of the structure D is longer than the waveguide diameter, $D>2 b$, and look for a periodic (with the same period D) solution of the Maxwell cquations with frequency Ω below the waveguide cutoff, $\Omega<\omega_{1}$. Applying the reciprocity theorem and continuity conditions leads to a simple equation for k :

$$
\begin{equation*}
u=\left(1+e^{-u p}\right) /\left(1-e^{-u p}\right), \tag{14}
\end{equation*}
$$

where $u-1 / y=k / k_{1}$ and $p=d D / b=D / l_{1}$. This equation has only one positive solution $u=u(p)>1$ for any positive value of p. It tends to 1 for $p \gg 1$, but its asymptotics at $p \ll 1$ is $u(p) \simeq \sqrt{2 / p}=\sqrt{2 l_{1} / D}$, that is quite different from those for a finite number N of discontinuities ($u \rightarrow N$, see Sect. 3). Since $u=k / k_{1}=l_{1 / l}$, where $l \equiv 1 / k$, it has a meaning of the number of effectively interacting discontinuities. It also gives a new "effective" length of the trapped mode in a periodic structure: $l \simeq \sqrt{D l_{1} / 2}=\sqrt{D b^{3} /\left(2 \mu_{1}^{2} A\right)}$. The frequency shift down from the cutoff frequency for this trapped mode instead of Eq. (3) becomes

$$
\begin{equation*}
\Delta u=\omega_{1} A /(b D) \tag{15}
\end{equation*}
$$

We checked Eq. (15) by numerical computations treating one structure period as a closed resonator, because metallic
end walls placed in midpoints between enlargements would not disturb the fields. The results agree well.

The resonant coupling impedance per period is a rather complicated expression, see [6]. Its asymptotics are: for short distances ($p \ll 1$),

$$
R_{p} \rightarrow \frac{Z_{0}}{\pi \mu_{1}^{2} J_{1}^{2}\left(\mu_{1}\right)} \frac{2 b}{\delta} \frac{\sin ^{2}\left[\mu_{1} D /(2 b)\right]}{\mu_{1} D /(2 b)},
$$

that is independent of enlargement area A, except that this asymptotic is valid when $2 b<D \ll l_{1}-b^{3} /\left(\mu_{1}^{2} A\right)$, while in the opposite extreme $(p \gg 1), R_{p} \rightarrow R_{1} \propto A^{3}$. Since A is small ($d=\mu_{1}^{2} A / b^{2} \ll 1$), the impedance per period is much larger for short-period structures.

4.2 A Few Discontinuities per Period

In the case when there are N enlargements per period, a system of $2 N$ homogeneous equations differs from that in Section 3 only by two first and two last equations, due to periodicity, and is studied in the same way. For example, for $N=2$, the equation for k takes the form:

$$
\begin{gather*}
\left(1-y_{1}\right)\left(1-y_{2}\right)-e^{-2 k g} y_{1} y_{2}-2 e^{-k D} \tag{16}\\
+e^{-2 k D}\left(1+y_{1}\right)\left(1+y_{2}\right)-e^{-2 k(D-g)} y_{1} y_{2}=0
\end{gather*}
$$

where g is the distance between the discontinuities, $g \leq$ D. When discontinuilies are identical, $y_{1}=y_{2}=y$, it factorizes into two equations ($u=1 / y$):

$$
\begin{equation*}
u=\left[1+e^{-u p} \pm\left(e^{-u r}+e^{-u(p-r)}\right)\right] /\left(1-e^{-u p}\right) \tag{17}
\end{equation*}
$$

where $p-d D / b$ and $r=d g / b, r \leq p$. The first of them always has a solution, corresponding to a symmetric mode. The second equation adds an antisymmetric one. We missed this mode in Section 4.1, because its period is twice longer than the structure period. The antisymmetric mode exists when (i) p is large enough, and (ii) both $\kappa=r / p=g / D$ and $(1-\kappa)$ are not very small.

5 CONCLUSIONS

Trapped modes in waveguides with many small discontinuities such as enlargements or holes are studied for periodic and aperiodic structures, see [6] for more details. Calculated eigenfrequencies are in good agreement with numerical computations. Most results work also for TEand higher-order modes. The results are applied to obtain coupling impedance estimates for the liners (thermal screens) of large superconducting colliders at frequencies near the cutoff, see in Refs. $[6,7]$.

6 REFERENCES

[1] G. Stupakov and S. Kurennoy, Phys. Rev. E49 (1994) 794.
[2] Design Study of the LHC, CERN 91-03, Geneva (1991).
[3] R.E. Collin, Field Theory of Guided Waves (NY, 1991).
[4] S.S. Kurennoy, Phys. Part. Nucl. 24 (1993) 380.
[5] K. Halbach and R.F. Holsinger, Part. Accel. 7 (1976) 213.
[6] S.S. Kurennoy, Preprint UMD (1994) (to be published).
[7] S.S. Kurennoy, Proceed. of this conference.

