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n bstract 

Trapped modes are studied in a waveguide with many 
small discontinuit,ies, which is a good model for the vac- 
uum chamber of large accelerators. Frequencies of trapped 
modes and their resonance contributions to the coupling 
impedance are calculated. 

1 INTRODUCTION 

It has been demonst,rated recently [l] t.hat a single small 
discontinuity (such as an enlargement, or a hole) on a 
smooth waveguide results in the appearance of t,rapped 
electromagnetic modes with frequencies slightly below the 
wavcguide cut,off frcqucncies, and that narrow resonances 
of the coupling impedance near the cutof?’ can be at- 
tributed to these trapped modes. This phencornenon could 
be dangerous for beam stability in large superconducting 
proton callidcrs like I,IIC, where the design anticipates a 
thermal screen (liner), with many small pumping holes, 
inside the beam pipe [2]. Tn such struct.ures with many 
srr~~ll discontinuities and high wall conductivity due t,o 
Inner copper coatmg, the trapped modes can contrihut,e 
significantly to the coupling impedances. 

2 A SINGLE DISCONTINUITY 

FVe list, some rosult,s from [l]. In a cylindrical waveguide 
with perfectly conducting walls having a small axisymmct- 
ric enlargement, at z = 0, with characteristic dimension 
much smaller than the pipe radius 5: therp is a solution 
of the Maxwell cqua.tions with frc:qu~:ncy a2: slightly below 
the cutoff frp:quency ~1 = /L~c/!I (/L, is t,he mth root of the 
I3csscl function JO). Far from t,he discontinuity (in fact, for 
1~1 > bj the fi~l<l~ of t,hp TM trapped IIIO~IC itrf’ 

t:(l) = (ILllb)ZJ-,,(~llTjb)exp(-k,l-l) * - , (1) 

and E;“, $) with corresponding radial behavior. The 
“propagation” constant. ICI = JG/c is 

kl = p;A/b3 , (2) 

where il is t,hc area of the cross section of t,ho enlargement 
in t,he ~z-plan(~. Note that A enters Eq. (2) wit,h it,s sign; 
f:.g , for an iris t,hat, protrudes int)o the pipe, .+l would have a 
ncgat#ivt> sign, and solution (1) would not esist,. Wc assume 
from thP beginning that, klb (< 1. So, the trapped mode 
is spread along the axis of the pipe over the long distance 
II G k;’ >> t. From (‘2) frequency shift Aol = WI - 01 is 

Ad, = qp:(A/P)“/2 . (3) 

For the case of a finite, though large, conductivity of the 
walls, the trapped mode exists only if damping rate “iI is 
smaller than Awl, i.e. when y1 = w16/(2b) < AU:, where 
6 = v’?/&,cw~) is the skin depth in the pipe wall. 

This trapped mode produces a narrow resonance of the 
longitudinal coupling impedance with the peak value 

RI = 4-%CllA3 
“6b5J&) 

It was shown t,hat a small hole in the pipe wall also 
creates localized axisymmetric trapped modes. Results for 
an enlargement remain valid for the hole if we substitute 
A --+ c~s/{4xb), where cl’@ is the magnetic susceptibility 
of the hole. in Eqs. (2)-(4). iz similar st,udy has been 
performed for higher-order and TE waveguide modes, and 
the cxisfence of trapped rrtc~lcs was also demonstrated [I]. 

3 MANY DISCONTINUITIES 

Consider an axisymmct,ric wavrguide with N small en- 
largernents located at zi and having arc‘as ‘,1, of the lon- 
git.udinal cross section, i = 1,2. , N. In t,his structure, 
we look for a solution of the Maxwell c:quat,ions with fre- 
quency 9 below the cutoff WI in the piece-wise form (the 
radial behavior is given by Eq (1)): n;ckz for z < zI, 
a,+le kr + b,epk2 for r, < z < ~,,+l, and bNemkZ for 
z > Z&J, where k = b-/r > @, and ai, bi, are ampli- 
tudes to be determined. We assume Icb << 1 and enlarge- 
men& are separated by distances larger than the chamber 
diameter, so that one can neglect higher modes. 

To find the cigenfrc~qucncy of t,he trappccl tnod~: we use 
continuity conditions and the Lorentz reciprocity theorem, 
e.g. [3]. It give: 2N simultaneous homogeneous equations 
for 2X+1 variables ((xi, bi and k). ‘The condit,ion for the so- 
lutions for nil b, t,o exist, i.e. the determinant of the matrix 
in the LIIS to vanish, gives an equation for k, which can 
be written recurrently for any N. In notations yi = di/x 
with d: = pTAi/b’ << 1 and I = kb, Eq. (2) for N = 1 
becomes 1 - y = 0. For fl = 2 

ill,z(kj E (1 - yl)(l - y2) - e-2kg1 ‘yly2 = 0 1 (5) 

Where gi,k = Zk -- Z,, (k > i), is a longitudinal distance 
between i-t.11 and Ic-th dlscontinuit,ies. Similarly, for N = 3 

i)l,31:k) E 11,,2(k)D2,3(k) - ~‘-*~~~“y~~~ ::: 0 (6) 

Hy induc.ti,:)n, for ?G > :3 discont8irluit ies 

Dl,N(f) 5 &,N-I(kjUfi--l,,~(k) - (7 

c:,; i)1,,(k)e-2kg,,,Nymy,~r - e-2”g’JJylyr\r = 0 
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Figure 1: Ratio t/ki versus g/11 for symmetric and nnti- 
symmetric (dashed) modes. Thick points show numerical 
results. 

3.1 iv==2 

Let us introduce new variables: p = >4s/Ar > 1; 
d = ,uTAl/b’; u = x/d = k/kl, and r = gd/b = g/11, 
cf. Eq. (2). Then Eq. (5) takes the form 

(u - I)(21 - p) - pexp(-2ur) = 0 (8) 

There are two positive solutions: u,, which exists for any 
T > 0, and decreases asymptotically from p + 1 at small 
r to p when T >> l/p; and u,, which exists only for 
T’ > (p + 1)/(2/T). and increases from 0 to 1 with T in- 
crease. The asymptotic values p and 1 correspond to the 
two independent trapped modes for the two far separated 
discont,innities. see Eq. (2). For two identical discontinn- 
ities, p = I, the factorized equat,ion is 

[II - I - exp(-ur)] [U - 1 + csp(-ur)] = 0 , (9) 

and both its solution tends to 1 at large r, see Fig. 1. 
Solution U, gives symmetric fields and u,, antisymmetric 
ones, i.e. fields are zero in the midpoint between the two 
identical enlargements Fig. 2. The behavior of 71, at small 
r is easy Tao explain: two close enlargements work like a 
single one with area A = A, + A?. It corresponds to 
IL,~ -+ p+ 1, when r + 0. 

We have calculated numerically the lowest eigenfrequen- 
ties in a long cylindrical resonator with two small pill- 
boxes using the code SUPERFISH [5]. To exclude the in- 
flnencr of the side walls, one has to choose length L of 
t.he resonat,or to be large, L >> Ir = b3/(/JTA). We used 
b = 2 cm, z4i = /I? = 0.18 cm’, g =l--20 cm and L from 
40 cm to 100 cm. Fig. 1 shows that numerical and analyt- 
ical results are in good agreement. 

The resonant, cont,ributions of trapped modes to the cou- 
pling impedance can be calculat,cd as for a cavity wit#h 
known eigenmodes. e.g. 141: 

R2 = lil 1L3 41 + P) + 2~ kxp(-~~) c4wIb) - 11 
~(1 + p) + 2p[exp(-2ur)(l+ ur) - l] ’ 

(10) 
where RI is the impedance for a single enlargernent i,ith 
area Ai, (cf. Eq. (4), and u = u(r,p) is a solut,ion of 
Eq. (8). For small T the ratio Ii!z/R, tends to (1 +P)~ for 

Figure 2: Electric field lines for symmetric (top) and anti- 
symmetric (bottom) trapped modes. 

the “symmetric” solution 21,. For large distances, R2/R1 
becomes p3 for u, and 1 for TA,. There are some oscilla- 
tions at intermediate distances. For two identical discon- 
tinuities, p = 1, ratio Rz/Rl at large distances becomes 
(1 f cos(,ulg/b)). While the sum of the impedances is just 
twice the impedance of a single enlargement, there are 
strong oscillations for each of two modes. 

3.2 iv=<3 

We condsider only the case of three identical equidistant 
discontinuities, i.e. di = d, i = 1,2,3 and gr.2 = y2,3 = g, 

Equation (6) transforms into 

(L-y)(u-1+e-2”‘) [(u - 1)2 - (U + l)eWzur] = 0 (11) 

The second brackets give an antisymmetric mode for two 
enlargements separated by 2g, cf. Eq. (9). The square 
brackets give t.wo symmetric trapped modes: 71,o corre- 
sponds to fields without nodes, exists for all r > 0, and 
tends to 3 at small P; and u,i, which exists only when 
r > 3/2 and has fields with 2 nodes. All three solution 
goes to 1 at large distances between discontinuities. 

The impedance for the symmetric modes is 

R3 = Rlu(e”‘(u - 1) + e+’ + 2u cos(,Jlg/b))2 
3u+l-e-2~ir+4ur(~- 1) 

(12) 

At srnall distances, R3/Rl goes to 33 = 27 for U,O. At large 
T it oscillat.es as (I f &cos(plg/b))‘/2 for 7~,0,11,1, see 

Fig. 3. In spite of the oscillations for each of the t,rapped 
modes, the sum of the impedances becomes just t!riple of 
that for a single discontinuity at large spacings in which 
case all three modes have the same frequency, Kq. (3). 

3.3 Many Identical Discontinuities 

In the case of N identical equidistant enlargerticnts cqua- 
tion (7) can be factorized in the form 

(1 - y)N-2 PrL(Y)l’“,,(Y) = 0 I (13) 

where n = nr = N/2 for even N and n. = nz + 1 = (n; + 
1)/2 for odd N, and P3(y) are polynomials in y of the 
power j except exponential dependence on u = l/y in their 
coefficients, cf. Eqs. (9) and (11). Equation P,(y) = 0 
has up t,o n posit#ive solutions corresponding to symmet#ric 
trapped modes. The actual number of the roots depends 
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Figure 3: Rat#io Rs/ RI VPPSUS g/l,: so solid, n dashed, and 
s1 dash-dotted lint. 

on the distance g hctween discont.inuities. For any g there 
is at least one solution, and it behaves like y 21 l/N at 
small distances, i.e. k zx Nkl, because P,(y) -+ 1 - Ny 
when g/11 -+ 0. This solution corresponds to the maximal 
symmetric trapped mode, without nodes. It always has the 
largest frequency shift, i.e. the lowest frequency between 
all the trapped modes, and the impedance N3 times that 
for a single discontinuity, Eq. (4), when g/11 -+ 0. 

Equation P,,(y) = 0 gives up to m solutions corresponct- 
ing to antisymmetric trapped modes. At large distances, 
when g/11 >> 1, the asymptotics of Pan j = n,m: are 
(1 - yjj , and there are N = 71 + m solutions of Eq. (13) 
which asympt,otically tend to I. 

4 PER.IODIC STRUCTURES 

4.1 One Discoritinrlity per Period 

CJonsider now periodic arrays of discontinuities. We as- 
sumf’ t,hat, the period of the struct,ure D is longer than the 
wavt>guicle diameter, D > 2b, and look for a pt>riodic (with 
thr sntnc~ period D) solution of t,he Maxw~=ll eqllations with 
frequency R below t.hc wsveguide cutoff, R < wI, Apply- 
ing t,he reciprocity theorem and corlt8inuity rondit,ions leads 
t,o a simple equat,ion for Ic: 

u = (I + e-“P)/(l - PP) ) (14) 

where u = l/y = k/k, and p = dDjb = D/11. This 
equation has only one positive solution u = IL(~) > 1 for 
any positive value of p It, tends to 1 for p ;F 1, but its 
asymptotics at p < 1 is ,u(p) z ~1% = ,/211/O, that 
is quite differrnt. from those for a finite number N of dis- 
continuities (11 + N, see Sect. 3). Since 2~ = k/k1 = 11/l, 
where I =7 l/k, it, has x meaning of the number of effec- 
i.ivoly int,eracting discontinuities. It also gives a new “effec- 
i.ivcx” 1Pngth of t,hr t,rapped mode in a periorlic structure: 
I = b/L?11,l2 = JDV/(2~~A). The frequency shift down 
from thr cnroff frcql~(~ncy for this trapped modr instead of 
Eq. (3) becomes 

Au = wlA/(bD) (15) 

We checked Eq. (15) by numerical computations treating 
one structure pf:riod as a closed resonator, because metallic 

end walls placed in midpoints between enlargements would 
not disturb the fields. The results agree well. 

The resonant coupling impedance per period is a rather 
complicat.ed expression, see [6]. Its asymptotics are: for 
short distances (p < 1): 

RP -+ 
20 2 sin’[pl D/(Zb)] 

v4J:hj fi FlDlW) ’ 

that is independent of enlargement area il, except that 
this asymptotic is valid when 2b < D < I1 = b3/(pfAjl 
while in the opposite extreme (p >> 1)) Rp -+ R1 0: A3. 
Since A is small (d = PTA/b’ < l), the impedance per 
period is much larger for short-period structures. 

4.2 A E’ew Discontinuities per Period 

In the case when there are N enlargements per period, a 
system of 2N homogeneous equations differs from that in 
Section 3 only by two first and two last equations, due to 
periodicity, and is studied in the same way. For example, 
for N = 2, the equation for k takes the form: 

(1 - yl)(l - y2) - e-2kgyly2 - 2emkD (16) 
+e-:!kD(l + Yl)(l + yz) - c -2k(D-g) 

YlYZ = 0 1 

where g is the distance between the discontinuities, y < 
D. When discontinuities are identical, y1 = y2 = y, z 
factorizes into two equations (U = l/y): 

u = 
1 
I$- e-uP & (e-vr + p-4P-r) )] /(l- e-z”p) ) (17) 

where p = dD/b and r = dg/b, r < p. The first of 
thern always has a solution, corresponding to a symmetric 
mode. The second equation adds an antisymmetric one. 
We missed this mode in Section 4.1, because its period is 
twice longer than the structure period. The antisymmet- 
ric mode exists when (i) p is large enough, and (ii) both 
n = rjp = g/D and (1 - K) are not very small. 

5 CONCLUSIONS 

Trapped modes in waveguides with many small disconti- 
nuities snch as enlargements or holes are studied for pe- 
riodic and aperiodic structures, see [S] for more details. 
Calculated eigenfrequencies are in good agreement with 
numerical computations. Most results work also for TE- 
and higher-order modes. The resu1t.s are applied to ob- 
tain coupling impedance estimates for the liners (thermal 
screens) of large superconducting colliders at frequencies 
near the cutoff, see in Refs. [S, 71. 
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