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Abstract 

An analytical solution for the field with an antisymmetry plane 
in an infinite rectangular channel (2-D plane problem) has been 
found by Fourier method. The flux function distribution over 
the channel boundary specified in an analytical form or in a 
number of discrete points serves as the basic information for 
calculations. The harmonic field representation in the vicinity 
of the channel axis is given. The authenticity of the results 
obtained is illustrated using dipole,quadrupole and sextupole 
fields. The problems of numerical realization of the technique 
proposed are discussed. The developed software can be used for 
a more detailed analysis of numerical results and for the treat- 
ment of magnetic measurement data. It can be effectively used 
for the field analysis in rather elongated rectangular regions. 

1 INTRODUCTION 

The harmonic field representation is widely used in the optics 
of charged particle beams [l], wit.h one summand usually pre- 
dominating, whereas other summands form minor disturbances 
in respect of it. Thus, the dipole field is described by a linear 
term, the qnadrupole- by the quadratic one etc. In real mag- 
netic systems besides the main harmonics the whole spectrum 
this directly being is present to this or that extent related to 
their design features and manufacturing precision. The field 
deviation from an ideal distribution is the most clear in th<* 
vicinity of disturbance sources. By taking the areaS located 
near the poles and excitation coils into the boundaries of the 
region considered it is possible to obtain an effective analysis 
of field disturbances. The field analysis in a circular aperture 
has been widely spread [a]. But, in a number of cases there 
occur the channels of the rectangular and elliptic cross-section. 
The field analysis in these channels fails in accuracy in passing 
to the inscribed circular cross-section. The field expansion in 
the rectangular aperture has been obtained by its known dis- 
tribution over the boundary. The solution for the systems with 
antisymmetry plane has been found. The harmonic field analy- 
sis has hecn performed. In order to verify the results obtained 
their adequacy to particular cases of the dipole, quadrupole 
and sextupole fields has heen drterminrd. 

2 GENERAL CONSIDERATIONS, 

The transverse field for the translation symmetry is described 
by the potential vector component A, = A(z, y), (z, 31 are the 
transverse and J is the longitudinal coordinates). The com- 
ponent in its meaning is a flux function. It is supposed that, 
considered are the magnetic systems with the median plane: 
y = 0. The solution of quite a general boundary problem (see 
Fig.1) may be represented as a superposition of two solutions: 
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The first solution, Al (see Fig.2), describes the antisymmet- 
rical pole relative to the plane z = 0, the second solution, 112 
(see F&.3), describes the symmetrical field. The above solu- 
tions should satisfy the following conditions: 

-41 Ir=o = 0 

$=o = 0 

which allow only the first quadrant of the coordinate plane 
to be considered. (Note, that. Al is an odd and AZ is an even 
function). It is necessary to form the boundary conditions. For 
rll there is: 

Al(Z.b) = f;(z) = [F](Z) - 4(-x)1/2 
/h(%Yj = f;(Y) = [r’;+(Y) - K(Yjl/L’ (21 

From the first equality of Eq.2 it is evident, that: 

f;(-z) = -f;iz) 

Figure 3: 
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It follows from the oddness condition of Ar that: 

&(-a, Y) = -A(n, Y) 

and 

For r22 there is: 

A(% Y) = 0 

Az(z, b) = f;*(z) = [E;(x) + F,(-a)]/2 

A2(a, Y) = f;*(y) = [E;+(Y) + K(YII/~ (3) 

It is evident from the first equality of Eq.3, that 

fT’(-z) = f;*(z). 

It follows from the evenness condition of AZ .that: n! x n Gezcp(--n + (1/12)n* - (1/360)n3 +. . .) 

Ad-a, Y) = Az(a, Y) yields 

and 

3 SOLUTION RESULTS. 
It is possible [3,4] to get the solution of AI (x,y) satisfying 
Laplace equation and boundary conditions: 

The solution of AZ can be obtained likewise. According to 
the conditions on the coordinate planes it should by of a sym- 
metrical form relative to the variables z/a and y/b: 

IJsing the known expansions of trigonometric and hyperbolic 
functions it is possible to represent A(x,O) as a series: 

A(z,O) =~~[~]“+a~ (‘11, 
k=l 

where the summands with odd powers would be conditioned by 
the Ai solution and those with even powers-by the AZ solutions: 

a?k+l = 

*t+, co 

CN” 
(2n - l)zk+’ 

&.k$.% (5) 
n=l 

(for k = 0, 1,2,3.. .) where: 

hf, = 2 .I a a 0 f;(r)sinydz 

s 
b f;(y)cJZn - l)*%y 0 2b 

4 SPECIAL FEATURES OF 
NUMERICAL REALIZATION. 

Direct calculation of the coefficients azk and azk+r by Eqs.(5) 
and (6) gives rise to calculation errors accounted for the pre- 
sentation of large numbers on a computer even at k=4. This 
effect is especially marked in case of elongated rectangles. 

These formulas should be modified. The introduction of fac- 
tors under the summation sign permits, for example, the fol- 
lowing for the first series in aar;+r to be obtained: 

Stirling formula: 

Zktl 

merp(l + ,fi+,h"& (7) 
a 

Similar expressions may be derived also for other terms of the 
series Qk+r and ask. The Stirling formula may be used at large 
values of n; at small values of n it yields an unacceptable large 
error (at n = 4 the error amounts to 10m5). That is why, for 
k = 1,2, 3 values the calculation are performed using Eqs.(5) 
and (6),and for rz > 4 the formula similar to Eq.(7) is used. 

For elongated regions the series in Eqs(7) have a bad con- 
verge.For the summation termination conditions of these sc- 
ries (b,/sn < c, where b, is the series term, sn is the partial 
s satisfied it is necessary to calculate the terms of t,he series 
with the numbers n=50 (a/b=1/2), n=lOO (a/b=1/5), n=200 
(a/b=1/8), this resulting in calculation errors. To find the sum 
of the above series the following approach has been suggested. 
Ry representing, for example, the multiplier at t,he coefficient 
M, in Eq.(5) as: 

Qn Zk+l 

b, = - 
&nab 0. 

++I 

Q=(,,)! ’ 

and representing ch+ rz 1/2,erp(e) (at n = 40 and a/b = 

l/8 an error amounts to =: lo-‘) the following is obtained: 

b,,=$$&= 
2Q((n - 1) + 1)2k+’ 

2Qc”,“=‘,‘(n - 1)” l&l 

.?#$.@)ezp(~) = 

weep 

Thus, the representation of b, is obtained by b,-1. Consider 
the series in (8) 

kt1 

Icam 
m=O 
a, = 

(2k + l)! m+l 
= m!(2k + 1 - m)!(n - I)*-‘-” = ‘,+I (21; + 1 - m)(n - 1)’ 

Knowing that u2kj.l = 1, it is easy to calculate am for all 
m = 0, 1,2, .I., 2k. 

And finally, we get for Eq.(S): 

a7n = n-b’ (2k + 1 _ m)(n - 1): 
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aZk+l = 1 

Thus, for k values exceeding a given level the calculations by 
E+.(T) are replaced with the calculations by Eqs(9). 

5 SOFTWARE REALIZATION. 

An automated procedure for the calculation of the ak coeffi- 
cients is realized in the form of the program module set using a 
standard dialect of the FORTRAN algorithmic language. Ac- 
cess to the FOURIE subprogram allows all the required coeffi- 
cients to be obtained immediately. 

In the FOURIE subprogram the assignment of correspond- 
ing components of the magnetic induction vector is provided 
inst,ead of the vector potential assignment . 

c) a=8. b=l 

6 RESULTS OF NUMERICAL 
EXPERIMENTS. 

The FOURIE subprogram has been tested for the ideal dipole, 
quadrupole and sextupole fields. 

a,b - dimension of the rectangle,on whose sides the vector 
potential distribution is given: 

a) a=l. b=l. 

1 ~1.00000009 
2 0 
3 3.8146. IO-' 
4 2.0293 lo-I0 
5 -2.1666'10-r 
6 0 
7 -1.7969. 1O-7 
8 2.0'10-'D 
9 5.2544.10-a 

10 0 

serial Expansion coefficients 
number dipole t 

0 2 lo-i0 

11 4.4456 ‘10-s 

b) a=5. b=l. 

quadrupole 
2.0 lo-r0 
4.5124. 10-i’ 
1.00000001 
-1.3565. lo-’ 
2.0293 10-m 
1.3149 10-Q 
-1.4172. 1O-8 
0 
-1.7160. 1O-9 
2.0 lo-I0 
3.9364.1o-g 
n 

sextupole 
2.0. lo-‘O 
1.3986. 10-i’ 
0 
-4.99999 10-i 
2.0293 lo-lo 
-6.4992. lo-’ 
0 
-1.4705'10-8 
2.0. lo-i0 
1.5297 1o-8 
0 
1.3550~10--s 

serial Expansion coeficients 
number dipole 1 quadrupole 

0 2 10-i” 12.6825. lo-” 

8 
9 
10 
11 

5.00001 1.0995 10-s 
5.9217 1o-Q 24.99991 
-4.2656. 1O-6 2.2673. lo-* 
6.3519 1O-8 1.5491 10-5 
2.0229'10-5 1.2579 10-r 
0 -9.0331 10-5 
-3.5958~10-s 0 
2.0 10-10 1.1941 lo-’ 
4.5807.10-5 2.0 I lo-lo 

0 1.0299. 1o-4 
2.5267.10-5 0 

sextupole 
2.0. lo-lo 
-2.5899. 1O-7 
5.9217.10-s 
-62.49985 
6.3518.10-* 
-7.4351 10-5 
0 
1.2992 10-4 
2.0 lo-i0 
-1.7034~10-' 
0 
-9.0746. 1O-5 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

8.00003 1.5708. 1O-9 
1.5544 10-s 63.9998 
-1.9772 . IO-’ 9.7670. 10-s 
4.1571 . 1o-7 -3.9377.10-" 
1.0840 .10-3 1.3070~10--6 
0 2.3247. 1O-5 
-1.7402. 1O-5 0 

:2.0 lo-lo 1.0950 10-4 
4.0817.10-5 2.0.1o-'O 
0 2.4587. lo-” 
9.9898. 1O-5 0 

1.4008.10-* 
1.5544'10-8 
-255.9991 
4.1571'10--' 
-1.1005, 1o-2 
0 
-1.9288. lo-" 
2.0 I lo-'0 
-4.2155. lo-’ 
0 
-9.9048. 1O-4 

2.0 lo-r0 -8.1803. lo-” 2.0 lo-r0 I -I 

d) The subprogramm has been tested also for the sum of the 
dipole, quadrupole and sextupole fields. With the refernce data 
of a=5. b=l. the following results have been obtained: 

ts 
sextupole 
2.0 lo-lo 

serial Expansion 
umber coeficients 

0 2.0175 lo-’ 
1 4.99935 
2 24.99991 
3 -62.50002 
4 -6.8301. 1O-5 
5 7.6837. IO-’ 
6 -3.4874. lo-* 
7 1.7852. 1O-3 
8 -2.5999 10-4 
9 1.7368. 1O-3 

10 -2.2120'10-4 
11 1.1581 1O-3 
12 -2.3167. lo-” 
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