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Abstract 

The classical expression for the field radiated by an 
accelerated electron is usually calculated using simplifying 
approximations. 

A new form is proposed here with no approximation. It 
can be used to calculate the field at short range, and to 
estimate the emittance effects. 

1. INTRODUCTION 

The electromagnetic field emitted by a relativistic particle, 
as described by the Lienard-Wiechert formula, has two terms. 

The field emitted at time t is sensed at the target at 
T = t+r/c. The acceleration term, which accounts for the 
synchrotron radiation, decreases as the inverse of the distance. 
The Coulomb term, which only transports along with the 
particle the energy stored in the field, decreases as the inverse 
square of the distance. 

The vector r ii joining the particle to the target will be 
broken into two parts, a constant average, and a variation p 
along the source 

rii = rofio-j? t-3 

If the source is short compared with the distance to the 
target, p may be neglected, and rii is constant. The two 
terms of (1) are then easily separated. However for a long 
source, such as an undulator, the variation of r and ii should 
be taken into account. This is done in section 2 for the power 
density of the radiation and for the total energy. The results 
are valid for small emission angles. In the same 
approximation, section 3 gives the time T as a function of t in 
the case of a sinusoidal field. The complete formula at infinity 
is given in section 4. Section 5 outlines the changes to be 
made for finite distance, and the emittance is considered in 
section 6. 

2. RADL4TED ENERGY 

The power density through a surface element dA is the 
scalar product of the Poynting vector with the unit vector I?. 
The normal and tangential components, with respect to R, of 
the field l? and of the direction vector ii, which makes an 

angle 6 with l?, will be clearly identified in the exact 
expression of the power density. 
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The periodicity of the motion over one machine turn, 
allows one to expand l?(T) in a Fourier series whose term of 
order k is 

fj (km,) = ‘!&ii (T) e-ik@sT dT (4 

It can be integrated using the differential expression of the 
field [l], modified here to take fully into account the v‘tiation 
of r and ii 

ii (T) = $-J-g: +J+; &]U) 

It has been shown [2] that the second term of (5) may be 
neglected when h << r, and the Fourier component I? (CO) is 
therefore 
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Since the initial formula (1) does not take into account the 
interactions of the field with the chamber walls, the validity 
of all that precedes is restricted to small values of 8, and we 
may then use it in the limiting case 0 = 0. The expression (3) 
can thus be simplified by putting 8 = 0. This leaves only the 
first bracket, where the relevant term is the derivative of (5). 
The total energy radiated over one turn is then given by 
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(7) 



where the integration limits have been left open, and the 
integrated term of (6) omitted, since it deals with end effects 
which will not be treated here. The equation (7) is close to the 
formula given in [I], with two slight differences : 

a) The vector (ii - 8)~ is used instead of ii x (ii x p), since 

the new reference is 6 instead of ii. 
b) The variable distance r belongs to the integrand. 

3. SINUSOIDAL UNDULATOR 

In the case of an undulator with a sinusoidal field, the 
integration variable will be replaced by the phase 6 of the 
field. The exponent in (7) can be approximated by 

wT = pL6 - A sin (26) - B cos 6 

w 0 = 4x y2 f 
” 

p,= w. 
(I( 1 + y + y2 e2 00 1 (8) 

B= w. c 1 2K y e cos cp 00 
where again terms of the order of 8* have been dropped and a 
constant phase substracted. The angles 0, and cpu define the 
orientation of ii, with respect to the axis of the undulator. p 
represents the average slip of the particle with respect to the 
emitted photons, A its modulation and B represents the 
transverse motion. 

4. SIMPLIFLED INTEGRATION 

To begin with, I shall suppose that fi lies along the axis 
of the undulator, and shall not consider the variation of r. 
However, to be prepared to do so, the integration will be 
performed piecewise, as in [3]. IJsing the symmetries of the 
harmonic functions, (7) is integrated to give 

g = d(x y i N)Y[ & s~~y]2~F/u.*,B)~ 

F = sin(pt) {[:I S3 - [rS, Y$] - Sl} 

- i cos(pf) {[:I S4 - [$ TV] S2} 
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Sz = jcos (p& + A sin 26) cos (B sin 6) d6 
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iTI2 
~3 = ]cos (pS + A sin 26) cos (B sin 6) cos 6 d6 

0 

rrl2 
S4 = jsin (~8 + A sin 26) sin (B sin 6) cos 6 d6 

0 

5. VARIABLE R 

The square bracket of (9) comes from the sum of the 
factors exp(g .2n?r) due to the non periodic part of the 
exponent, where r does not appear. The variation of r along 
the undulator will be taken into account by using a mean 
value r, valid for each period, which will alter the sum. 

6-p rO ii P P - = o- -....- 
r r2 r2 r 

(10) 

and the bracket can no longer be separated from the vector 6. 
The first term introduces a 1 / ri contribution which modifies 
the line width. The last term modifies also the line width, but 
due to a l/r, contribution. The middle term is due to the 
transverse oscillation of the particle. Its contribution is 
expressed by two new integrals analog to S3 and S4, but 
where cos 6 is replaced by sin 6. 

6. CONCLUSION 

A minor modification of the usual formulae allows one to 
take into account the short range radiation. The integrals S1 
through S4 can be calculated directly, or expanded in a series 
of Bessel functions. 

The finite emittancc of the beam should be taken into 
account by a modification of the origin of rO &, and the 
orientation of ij . It plays also on the exponent (7) by altering 
the angle eo. 
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