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Abstract 

Stability of coherent betatron oscillations of an intense 
coasting beam in a synchrotron is studied. Local space- 
charge field is treated by the Green’s function method. 
Analysis is made of the dipole mode, as well as of any 
higher-multipole mode of coherent oscillations in the trans- 
verse phase-plane. Having the same source, coherent and 
incoherent space-charge effects are studied concurrently, 
i.e. the problem is approached in a self-consistent way. 
Generalized threshold map technique shows that given the 
absence of nonlinearity of external guide field: (1) it is 
the dipole mode exclusively which may turn unstable, (2) 
coherent betatron tune shift exactly compensates the in- 
coherent one, and (3) the higher-multipole modes always 
occur well below Landau damping threshold, the latter be- 
ing introduced by the incoherent nonlinear tune shift itself. 

1 INTRODUCTION 

It is a common matter to study interaction between a 
charged intense beam and resonant surrounding in terms of 
transverse impedance. But such an approach is sometimes 
inconvenient in studies of interaction between the beam 
and its local space-charge field. Method followed below is 
based on further development of approach of Ref. [ l] and on 
a generalized threshold map technique applied in Ref.[~]. 
Though a 1D (flat) relativistic coasting beam is consid- 
ered here, the method involved can be readily extended to 
a 2D (round) coasting beam as well. The latter results in 
a mere complication of analytical expressions and requests 
much more powerful calculation tools to get numerical so- 
lution. In order to make the approach more transparent, 
nonlinearities of external focusing fields are ignored here. 

2 POTENTIAL OF A CHARGED 
PLANE PLATE 

Potential of a flat relativistic beam can be derived from 

d2’l! 
- - 72Ll dz2 

- -q(z). (1) 

Here L is orbit length, I is beam “width”, 7 is relativis- 
tic factor, z is vertical coordinate, p(z) is charge density 
function normalized by 

r 
p(z)dz = eN, 

-cc 

e is charge of particle, N is number of particles in the 
beam. The Green’s function G(z, z’) of Eq.1 is a potential 

of a charged plane sheet with a unit density placed at a 
coordinate z’: 

G(z - z’) =I z - z’ I /2. 

Thus, 

Q(z) = -$& Jp I z - z’ 1 p(z’)dz’. (2) 
m 

3 INCOHERENT COULOMB TUNE 
SHIFT 

Let us consider a stationary phase trajectory 

z = Acoscp, p = -myA+ sin ‘p. 

A steady-state distribution function F 
the amplitude A = 
by 

F(A)AdA = 1. 

This steady-state distribution of charge, according to our 
assumption, imposes a Lorentz force: 

eE(z) = -edq/dz. 

F’rom Eq.2 one gets 

O3 A’dA’$$ cos ‘p’ / z-A’ cos p’ 1 . 

Now, incoherent Coulomb tune shift can be derived pro- 
ceeding from equation of a stationary betatron oscillations: 

2 + Q$d2z = -. eE(z) 
m-f 

By applying a standard averaging procedure one gets 

AQd-4) = -e’N_’ jrn K~(A,A’)~A~&I~. (3) 
v3Q06A o 

The kernel K,, (A, A’) is defined as 

K,,(A, A’) = 
s,” dp $’ dp’ 1 A cos ‘p - A’ cos p’ 1 cos(ncp) cos(ncp’). 

Eq.3 describes the incoherent tune shift due to space 
charge of a steady-state distribution of particles. 
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4 INTEGRAL EQUATION FOR 
MULTIPOLES 

One can expand the Laplace image of a small perturbation 
of F(A) into Fourier series 

f(A P) = c fn(-4 exp(--Inca). 

Then, the linearized Vlasov equation results in 

(w - kb + +)f,,(A) = n---$g~ I= ~exp(iv)h 
1 

In fact, potential ?Tr is imposed by the entire pertur- 
bation f(A,cp), b u we consider only its n-th multipole t 
component f,,(A) exp(-incp). It is supposed to bring the 
dominant contribution to the potential. Using the Green’s 
function one obtains 

f&4) [; - k + nQo 
2N 

---3- 
1 .a is,” &(A, A’)A’dA’$A’dA’ 

my flxQ00 I 

= --nzy& ,Q’oe2 i$$ J,” K,(A,A’)f~(A’)l’dA’i4i 

It is easy to solve one-dimensional linear integral equation 
Eq.4 numerically. However, the case n = 1 (the dipole 
mode) can be treated analytically: 

w 
-7 
8 =k-Qo, fl(A) cc y. 

If we reconstruct the function of beam full-charge density 
e which corresponds to the net distribution function 7 = 
F + f, 

Q(Z) = 
I 

4~ P’(A) + fl(4 exp(-%)I , 

then e(z) = p(z + 6,s) where p is the charge density func- 
tion corresponding to steady-state F(A). This is the well- 
known solution for a dipole mode. It has a simple phys- 
ical interpretation. Coherent dipole mode of oscillations 
is nothing but the beam center-of-mass oscillations at the 
unperturbed frequency Qo, the latter being defined by the 
external magnetic lattice. In other words, the coherent 
frequency shift exactly compensates the incoherent one: 

AQcoh = -AQinc. (5) 

Note that this solution describes oscillations with a sus- 
tained amplitude. Other factors which were not included 
into consideration can well result in a growth of the oscil- 
lation amplitude. 

5 GENERALIZED THRESHOLD MAP 
TECHNIQUE 

In order to define whether the solutions of Eq.4 are sta- 
ble or not, we use a generalized threshold map technique 

(GTMT). Let us introduce a formal parameter X and func- 
tion y(A): 

~(4 = lrn &(A, A’)f,(A’)A’dA’. 

Then, Eq.4 can be put down as: 

XY(-~ = 
/ 

m &(A, A’)$y(A’)dA’ 

Cl+no(A’) ’ (6) 
0 
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no(A) = f Jrn 
0 

K1(A, A’)-$A’dA’ 

Solution of Eq.6 is a discrete series of eigenvalues X, and 
corresponding eigenfunctions y,(A) for each value of !2. 
We define function x(n) as X, with the maximum absolute 
value for each definite 0. Function X(a) defines a curve 
in complex plane {Re(A),Im(X)}, 0 running from -co to 
+co. According to GTMT, this curve is referred to as a 
threshold curve which splits complex plane {Re(X), Im(x)> 
into unstable and stable regions. The first ones are the im- 
ages of half-plane Im(w) > 0 subjected to mapping x(n) 
and correspond to unstable solutions with growing ampli- 
tudes. The latter regions either correspond to damped 
solutions, or there are no resonance solutions for these X 
at all. We look for solutions of Eq.6 with X = 1. Thus, 
GTMT gives a certain receipt: the solutions of Eq.6 would 
have stable or unstable character depending on the par- 
ticular location of point X = 1 w.r.t. stable or unstable 
regions in {Re(A), Im(A)}. 

6 NUMERICAL SOLUTION FOR 
VARIOUS F(A) 

To solve Eq.6 numerically, one should take definite func- 
tion F(A) close to the realistic ones. Let us choose 

- F(A) l2 1 a2/al, 0 5 a 5 al; = 

1+ al + a: (1 - a)“/( 1 - ad, al <a< 1; 

where a = A/A0 , A0 is the maximum amplitude (the 
“half-height” of the beam), ai = A1/Ao. Such a choice 
provides various shapes of the steady-state distribution 
function F(A) by varying free parameter Al. 

Fig.1 shows the threshold curves x(n) for al ranging 
from 0.1 (the inner curve) to 0.9 (the outer curve) in com- 
plex plane {Re(X),Im(X)) for dipole mode n = 1. Point 
X = 1 lays exactly on the threshold curve. As discussed 
above, this means that all the solutions would be oscil- 
lations of the beam center-of-mass with a sustained am- 
plitude. However, any small displacement of this working 
point would result in solution becoming unstable. Thus, 
the solution of Eq.6 for dipole mode n = 1 has, practical- 
ly, an unstable character for all shapes of function F(A) 
considered. 
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Figure 1: Threshold curves for n = l,al = 0.1-0.9. 

Fig.2 shows similar threshold curves for quadrupole 
mode n = 2. Point A = 1 is exactly on the threshold curves 

Figure 2: Threshold curves for n = 2,al = 0.1-0.9. 

again for values of al = 0.6-0.9. This means that the 
beam with the “short-tail” distribution is unstable w.r.t. 
resonant excitation of the coherent quadrupole mode (os- 
cillation of the beam shape). But for values of al = 0.1-0.5 
the point X = 1 lays in the stable region, i.e. the beam with 
“long-tail” distribution is stable w.r.t. resonant, excitation 
of the coherent mode n = 2. Let the point in which the 
threshold curves comes off the axis Re(X) in Fig.2 be re- 
ferred to as the “breaking-away” point B. Fig.3 shows B 
versus al for modes n = 1,2,3. Curve B(al) for n = 2 
starts from value B(0) < 1, then crosses B=l at al = 0.6 
(cross-point Cz), and goes to infinity when al -+ 1. It is 
clear hereof that all distributions with al > C.J are unsta- 
ble, while those with al < Cz are stable. The behavior of 
function B(ul) for all modes n = 1,2,3, . . . has the same 
character. There is no cross-point Cl for mode n = 1 be- 

m 5 /’ 

-- 

n--l 

4 _~_-- 

3 -.-.--- .. 

l- n:, ----” 
/ 

na=3 ----’ 

0T7.Tmvyv, ,,~, 06 ,,,, 0.0 
07 

~ 
04 OR 1.0 

01 

Figure 3: “Breaking-away” point B versus al for n=1,2,3. 

cause curve B(al) for n = 1 runs higher than line B=l. 
Cross-points C; for modes n 1 3 are always located to the 
right of point Cz with al = 0.6. 

‘7 CONCLUSION 

A (flat) beam is always unstable w.r.t. resonant excitation 
by Coulomb self-field of coherent dipole mode n = 1. How- 
ever, if we assume that the beam has a long enough %.il” 
of distribution F(A) (i.e. its parameter al < 0.6) then all 
the higher coherent multipole modes, n 2 2, would never 
be resonantly excited because of the Landau damping due 
to nonlinearities caused by the Coulomb self-field itself. 
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