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Abstract

Stability of coherent betatron oscillations of an intense
coasting beam in a synchrotron is studied. Local space-
charge field is treated by the Green’s function method.
Analysis is made of the dipole mode, as well as of any
higher-multipole mode of coherent oscillations in the trans-
verse phase-plane. Having the same source, coherent and
incoherent space-charge effects are studied concurrently,
i.e. the problem is approached in a self-comsistent way.
Generalized threshold map technique shows that given the
absence of nonlinearity of external guide field: (1) it is
the dipole mode exclusively which may turn unstable, (2)
coherent betatron tune shift exactly compensates the in-
coherent one, and (3) the higher-multipole modes always
occur well below Landau damping threshold, the latter be-
ing introduced by the incoherent nonlinear tune shift itself.

1 INTRODUCTION

It is a common matter to study interaction between a
charged intense beam and resonant surrounding in terms of
transverse impedance. But such an approach is sometimes
inconvenient in studies of interaction between the beam
and its local space-charge field. Method followed below is
based on further development of approach of Ref.[1] and on
a generalized threshold map technique applied in Ref.[2].
Though a 1D (flat) relativistic coasting beam is consid-
ered here, the method involved can be readily extended to
a 2D (round) coasting beam as well. The latter results in
a mere complication of analytical expressions and requests
much more powerful calculation tools to get numerical so-
lution. In order to make the approach more transparent,
nonlinearities of external focusing fields are ignored here.

2 POTENTIAL OF A CHARGED
PLANE PLATE

Potential of a flat relativistic beam can be derived from

a*y 4T
Fr ZLlp( ). (1)

Here L is orbit length, ! is beam “width”, v is relativis-
tic factor, z is vertical coordinate, p(z) is charge density
function normalized by
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e is charge of particle, N is number of particles in the
beam. The Green’s function G(z, 2’} of Eq.1is a potential

p(z)dz = eN,

of a charged plane sheet with a unit density placed at a
coordinate z’:

Giz—2)=|z—2"]|/2

Thus,

¥(z) = —:Y—zﬁ-% [Z | z — 2" | p(2")d2’. 2)

3 INCOHERENT COULOMB TUNE
SHIFT

Let us consider a stationary phase trajectory

z = Acosp, p= —myApsinp.

A steady-state distribution function #(A) depends only on
the amplitude 4 = {/z? + p?/m242? and is normalized
by
[ee]
/ F(A)AdA = 1.
0

This steady-state distribution of charge, according to our
assumption, imposes a Lorentz force:
eE(z) = —ed¥/dz.

From Eq.2 one gets

dF
E(z2)= 2Ll _tdgo‘/ AdA’dA’ cosy’ | z—A'cos ¢’ |.
Now, incoherent Coulomb tune shift can be derived pro-

ceeding from equation of a stationary betatron oscillations:

d*z
dat?

+ QOBZ — eE(z).

By applying a standard averaging procedure one gets

AQinc(A) = - WA/ Ki(A, A)dA,A'dA' (3)

The kernel K, (A, A") is defined as

Kn(A,A) =
for dp f; de' | Acosp — A cos ¢’ | cos(nyp) cos(ny').

Eq.3 describes the incoherent tune shift due to space
charge of a steady-state distribution of particles.
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4 INTEGRAL EQUATION FOR
MULTIPOLES

One can expand the Laplace image of a small perturbation
of F(A) into Fourier series

Z Fn(A) exp(—iny).

Then, the linearized Vlasov equation results in

f(4,9) =

e 1 dF 1 ["
- v ing)d
m'ytp AdA2x / exp(ing)dyp

In fact, potential ¥ is imposed by the entire pertur-
bation f(4,¢), but we consider only its n-th multipole
component fn{A)exp(—ing). It is supposed to bring the
dominant contribution to the potential. Using the Green’s
function one obtains

(w — k8 +n@)fa(A) =n
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It is easy to solve one-dimensional linear integral equation
Eq.4 numerically. However, the case n = 1 (the dipole
mode) can be treated analytically:

S, 4F),

5 fi(4) «

If we reconstruct the function of beam full-charge density
o which corresponds to the net distribution function F =
F+f,

olz) = / dp[F(A) + f1(4) exp(~ip)]

then o(z) = p(z + 6z) where p is the charge density func-
tion corresponding to steady-state F(A). This is the well-
known solution for a dipole mode. It has a simple phys-
ical interpretation. Coherent dipole mode of oscillations
is nothing but the beam center-of-mass oscillations at the
unperturbed frequency Qo, the latter being defined by the
external magnetic lattice. In other words, the coherent
frequency shift exactly compensates the incoherent one:

AQcoh = —AQ4n.. (5)

Note that this solution describes oscillations with a sus-
tained amplitude. Other factors which were not included
into consideration can well result in a growth of the oscil-
lation amplitude.

5 GENERALIZED THRESHOLD MAP
TECHNIQUE

In order to define whether the solutions of Eq.4 are sta-
ble or not, we use a generalized threshold map technique

(GTMT). Let us introduce a formal parameter A and func-
tion y{A}):

y(4) = /0 " Ka(A, A')f(A)A'dA".

Then, Eq.4 can be put down as:

o Ka(A, ) Toul YA
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Q+ Q0(4") ’
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Solution of Eq.6 is a discrete series of eigenvalues A, and
corresponding eigenfunctions y,(A) for each value of €1.
We define function A(2) as ), with the maximum absolute
value for each definite 2. Function A(Q2) defines a curve
in complex plane {Re(}),Im(A)}, © running from oo to
+00. According to GTMT, this curve is referred to as a
threshold curve which splits complex plane {Re(}), Im(A)}
into unstable and stable regions. The first ones are the im-
ages of half-plane Im(w) > 0 subjected to mapping A(Q2)
and correspond to unstable solutions with growing ampli-
tudes. The latter regions either correspond to damped
solutions, or there are no resonance solutions for these A
at all. We look for solutions of Eq.6 with A = 1. Thus,
GTMT gives a certain receipt: the solutions of Eq.6 would
have stable or unstable character depending on the par-
ticular location of point A = 1 w.r.t. stable or unstable
regions in {Re(}), Im(A)}.

6 NUMERICAL SOLUTION FOR
VARIOUS F(A)

To solve Eq.6 numerically, one should take definite func-
tion F(A) close to the realistic ones. Let us choose

12 { 1-a%/ay,
Trard | (- a)?/(1—a),

where @ = A/Ap , Ao is the maximum amplitude (the
“half-height” of the beam), a; = A,/Ao. Such a choice
provides various shapes of the steady-state distribution
function F(A) by varying free parameter A;.

Fig.1 shows the threshold curves A(f2) for a; ranging
from 0.1 (the inner curve) to 0.9 (the outer curve) in com-
plex plane {Re(}),Im())} for dipole mode n = 1. Point
A = 1 lays exactly on the threshold curve. As discussed
above, this means that all the solutions would be oscil-
lations of the beam center-of-mass with a sustained am-
plitude. However, any small displacement of this working
point would result in solution becoming unstable. Thus,
the solution of Eq.6 for dipole mode n = 1 has, practical-
ly, an unstable character for all shapes of function F(A4)
considered.

0<a<ay;

F4)= am<a<l
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Figure 1: Threshold curves for n = 1,a; = 0.1-0.9.

Fig.2 shows similar threshold curves for quadrupole
mode n = 2. Point A = 11is exactly on the threshold curves

tmlA)

Gb

~-1.5 7

-2.0

N

~16 ~05 00 93 10 15 20

Figure 2: Threshold curves for n = 2,a, = 0.1-0.9.

again for values of a; = 0.6-0.9. This means that the
beam with the “short-tail” distribution is unstable w.r.t.
resonant excitation of the coherent quadrupole mode (os-
cillation of the beam shape). But for values of a; = 0.1-0.5
the point A = 1 lays in the stable region, i.e. the beam with
“long-tail” distribution is stable w.r.t. resonant excitation
of the coherent mode n = 2. Let the point in which the
threshold curves comes off the axis Re()) in Fig.2 be re-
ferred to as the “breaking-away” point B. Fig.3 shows B
versus a; for modes n = 1,2,3. Curve B(a;) for n = 2
starts from value B(0) < 1, then crosses B=1 at a; = 0.6
(cross-point C3), and goes to infinity when a; — 1. It is
clear hereof that all distributions with a; > C; are unsta-
ble, while those with a; < C, are stable. The behavior of
function B(a,) for all modes n = 1,2,3,... has the same
character. There is no cross-point C; for mode n = 1 be-
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Figure 3: “Breaking-away” point B versus a; for n=1,2,3.

cause curve B(a;) for n = 1 runs higher than line B=1.
Cross-points C; for modes n > 3 are always located to the
right of point C; with a3 = 0.6.

7 CONCLUSION

A (flat) beam is always unstable w.r.t. resonant excitation
by Coulomb self-field of coherent dipole mode n = 1. How-
ever, if we assume that the beam has a long enough “tail”
of distribution F(A4) (i.e. its parameter a; < 0.6) then all
the higher coherent multipole modes, n > 2, would never
be resonantly excited because of the Landau damping due
to nonlinearities caused by the Coulomb self-field itself.
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