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Abstract 

Transverse instabilities in synchrotrons with large space 
charge tune shift are considered. In particular, the vari- 
ation of the incoherent tune with longitudinal position in 
the bunch is included. Expansion in an appropriate ba- 
sis set results in an eigenvalue problem which reduces to 
previously derived expressions when the space charge tune 
spread is ignored. The regime where the synchrotron tune 
is negligible compared to the space charge tune shift is also 
considered. Under appropriate conditions this results in a 
significantly smaller growth rate than the ones obtained 
using the weak coupling formalism. Finally, the effect of 
octupole induced betatron tune spread is included, result- 
ing in a technique for estimating the maximum stable cur- 
rent. 

1 MODERATE TUNE SHIFT REGIME 

Consider the Vlasov equation for a ring containing M 
equally spaced, equally populated bunches. Betatron fre- 
quency (WI) spread due to chromaticity (0 is included, 
but amplitude dependent tune spread is ignored. The syn- 
chrotron frequency (w,) is assumed to be independent of 
amplitude. Calculations are done in the smooth machine 
approximation so we neglect synchrobetatron resonances. 

Since it follows individual particles, the Vlasov equation 
contains the incoherent betatron frequency 

WI (6,(b) = wy 11-t a(( - dl - A~~P(~)/P(O), (1) 

where wy is the zero current betatron frequency for an on 
momentum particle, 17 is the frequency slip factor, Awl 
is the incoherent space charge frequency depression in the 
center of the bunch, 6 is the fractional momentum devia- 
tion, and 4 = 0 - wet, where 0 is aeimuth, wo is the revo- 
lution frequency of an on momentum particle, and ~(4) is 
the line density. 

Using first order perturbation theory, and assuming a 
time dependence exp(-inat) yields an eigenvalue problem 
in four variables. Coupled bunch modes are identified, and 
the problem is reduced to studying the behavior of a sin- 
gle bunch. Using the dipole approximation for the trans- 
verse distribution and choosing the upper betatron side- 
band leaves an equation for gi(4,6); the longitudinal dis- 
tribution function of the perturbation. The unperturbed 
longitudinal distribution is taken to be a Gaussian of rms 
width CT. 

We make the substitution g1 = g2 exp[iQ,(</q - 1)4] 
and express the result in normalized, Cartesian variables 
z = cj/&, II = &%wa, 
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where a is the coupled bunch mode number, k7: = &M + a + 
Q,(l - t/q), and Q = (0 - wJ/w, is the frequency shift 
in units of the synchrotron frequency. Additionally, 
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^ 
where f is the average beam current, 21 is the non-space 
charge part of the transverse impedance and Awe is the 
coherent space charge frequency depression in the center of 
the bunch. The charge and total energy of a synchronous 
particle are q and ET, respectively. The second term on 
the first line of equation (2) is due to the incoherent space 
charge tune spread and was absent in previous analyses. 
To solve the Vlasov equation expand g2 as 

g2(z, u) = ~(-iJZ)“u,,,~,(z)Hm(v)e - cz2 + u2), 

where m 
emz2, 

is the Hermite polynomial of order m and the sum 
is over all pairs of non-negative integers. Substituting 
the expansion into the Vlasov equation, multiplying by 
H,(z)H,(v)dzdu and integrating yields a matrix for the 
expansion coefficients [5] 

-Qu~,~ = c T.,q,n,man,m. 
‘Work supported by U.S. Ll.0.E;. 
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The matrix element is given by 

T P>9,R,rn = - 
{ 

-%+&-, 
a 

+ fime-&+, 
1 

I ‘6y x gt(&)“+Pe - P2 
k 

+ 
b,ob;(Al~c - Aw,) 

w,p!& 
J?("+;+')EV(n+p) 

+ -!zrdY% (n+;+l) EV(?&+p), 
w&l!& (4) 

where 6: is the Kronecker delta, l?(z) = (z - l)!, and 
EV(k) is 1 when L is even and zero otherwise. The effect 
of space charge tune spread is contained in the last term 
on the r.h.s. of equation (4). 

In practical applications the double sum in the eigen- 
value problem needs to be truncated. In the zero current 
limit only the first term in the matrix T remains and the 
eigenvectors lie in subspaces of constant p+~. To allow for 
coupling between these synchrotron modes, without modi- 
fying the exact low intensity limit, the e&endue problem 
is truncated using 

- Qap,, = x Tp,q,n,man,m. 
nfm<K 

C-4 

The value of K in equation (5) is equal to the largest syn- 
chrotron mode included in the calculation ie. the largest 
eigenvalue in the zero current limit. To solve equation (5) 
we define an array N(p,q) which is one to one with the 
ordered pairs (p, q) for p + q < K. Using the index N re- 
sults in the usual sort of mat& eigenvalue problem which 
we solve on the computer using standard techniques. We 
go on to establish the connection between the Hermite ex- 
pansion technique and previous work. 

Studies of beam stability usually employ action an- 
gle variables or, topologically equivalent, amplitude angle 
variables. Consider the amplitude angle variables T, 4 de- 
fined via z = T sin $, u = T cos $. Equation (2) is usually 
written 

%I2 Qgz(T, 4) + i--- w 

= -,<,,,, .e 

where 

Dk = 
I 

rdrd$e - i&km sin $J~~(~, $), 

and Xk now includes the space charge impedance which is 
given by 

z (7) 

In equation (7) R is the radius of the synchrotron, a is the 
radius of a uniform equivalent beam, and b is the radius 
of the pipe. Space charge induced, betatron tune spread 

is not included in equation (6). Another, usually irrel- 
evant, discrepancy between equations (2) and (6) is due 
to the fact that the Gaussian distribution does not have 
bounded support. The space charge force calculated via 
the summation is not identical to the second line of equa- 
tion (2), since the tails of the adjoining bunches overlap 
the bunch under study. In what follows we assume that the 
equations following from (6) are appropriately modified to 
remove this discrepancy. 

Instead of expanding in Hermite polynomials equa- 
tion (3) would be given by 

g2(T, $) = ~ir,,j~~~~L~~'(T~)~~~~ - T2, (8) 
m,i 

where Llm’ ’ 1s a generalized Laguerre polynomial. An in- 

finite m)atrix for the expansion coefficients (f) can be 
obtained by substituting equation (8) into equation (6), 
multiplying by rdrd$ exp(-in$)rlnllF’(~2), and integrat- 
ing [z]. Unlike the Hermite expansion technique, there is 
some freedom in defining the truncation procedure for the 
infinite matrix. A natural truncation is given by 

- Q&i,, = x %,,p,k&,,k, 

Inl+Zk<K 

(9) 

which includes all polynomials in T of order 5 K. 
Since ~1~1 exp(im$) = (u + isgn(m)z)iml, equations (5) 

and (9) expand g2 in equivalent basis sets, and, since 
rdrd$ = dzdv, the measures used in the integrations to 
obtain the matrix elements are equivalent. It follows that 
(when the last term on the r.h.s. of equation (4) is ne- 
glected) 6 and a are related by a linear transformation 
and that the eigenvalues of equations (5) and (9) are iden- 
tical. We have verified this numerically. It can also be 
shown that equation (9) is equivalent to the transverse 
strong coupling-short bunch case considered by Wang [4]. 

Computer code has been written to solve equation (5) 
for K < 28 and studies of existing machines are in 
progress. One general feature of the studies is that the 
values of Aw,/w, can be very large, especially at low en- 
ergy. As a rule of thumb, we assume that the calculations 
become meaningful when K 2 Aw~/w~, making the study 
of the large tune shift regime very difficult. In the next 
section we use an analytic approximation in this regime. 

2 LARGE TUNE SHIFT REGIME 
In the large tune shift regime Awr 2 AWC >> w,. Instead 
of including a large number of synchrotron modes we set 
w, = 0 and consider a beam which is frozen longitudinally. 
The vertical equation of motion is given by 

ji+w2y= FL(5?4,At) 
Y 

-Ym ' 
(10) 

where both transverse coordinates appear in the collec- 
tive force. This force contains contributions due to cur- 
rents flowing in the walls of the vacuum chamber and di- 
rect particle-particle forces which are responsible for the 
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space charge tune spread. Averaging equation (10) over 
particles at a fixed value of 4 causes the particle-particle 
contribution to cancel and results in an eigenvalue prob- 
lem for < y(#,t) >= y(4)exp(--ini). Approximating 
i-l2 - w; x 2w,(n - wv) yields an eigenvalue problem for 
the upper betatron sideband 

(0 - w,)y(t#J) = -$.g. 
I (11) 

Only the forces due to the currents in the wall remain and 
the coherent frequency is independent of Awl. Multiplying 
equation (2) by wd, letting w, -+ 0, and integrating over 
v results in an equivalent equation for the Gaussian line 
density. 

For a cosine squared line density where the wall force 
is due to space charge in conjunction with a narrow band 
resonator, equation (11) may be solved exactly [5]. The 
coherent frequency with non-vanishing imaginary part is 
given by 

n-w,= A@ 
Ano - Awe/4 

- Awe, 

where Aflo is the frequency shift for AWC = 0. The so- 
lution is valid for /l - ~A~~o/AwcI > 1 while no solu- 
tion exists when 11 - 4AfIo/AwcI < 1 and the system is 
Landau damped. In all cases, Im(n) 5 Iln(Ano) j, and 
Im(n) << IIm(Afio)I when IAS% << AWC. Other smooth 
line densities give comparable results. The reason for the 
growth rate reduction can be understood by considering 
the eigenfunction y(4). When lARo[ < Awe one finds 
that y(d) is large only for 141 2 crAf&,/Awc. In physical 
terms, the space charge impedance causes the local co- 
herent betatron frequency to vary along the bunch, like 
a collection of oscillators with different natural frequen- 
cies. The resonator is only partially effective in maintain- 
ing the oscillators at a single coherent frequency resulting 
in a reduced effective intensity and a subsequently reduced 
growth rate. 

3 LANDAU DAMPING BY 
OCTUPOLES 

Octupoles in the machine lattice give an amplitude de- 
pendent, betatron tune which contributes to the Landau 
damping of betatron oscillations. Chin [3] has consid- 
ered this effect for a Gaussian distribution, ignoring space 
charge tune spread. Here, we will focus on beams with 
large space charge tune shift and only consider instability 
thresholds. As of now we have only been able to perform 
calculations for the case of a constant line density within 
the bunch. The space charge tune depression is taken to 
be constant within the bunch. When octupole tune spread 
is ignored, the eigenvalue problem can be reduced to [l] 

b, = -i f: GmlP c bn x x,~p(~&in(k& 
,,,Q-~+2m n L 

(13) 

where xl includes the space charge impedance, &(z) is the 
spherical Bessel function, Q is calculated using the space 

charge depressed betatron frequency, 4 is the half length 
of the bunch, and 

G 
2p + 1 qm + 1/2)r(p - m + l/2) 

7n.p = - A m!(p- m)! . 

Octupole induced tune spread is included by making the 
substitution 

1 

Q-p+2m -+ F,(Q - P + zm), 

where c is a measure of the betatron tune spread and F,(z) 
is the dispersion integral. If the distribution of the trans- 
verse action (IV) is assumed to be c( (I,,, - 1Y)2, 

(14) 

where c = (w~(.&,,,,) - r~,(O))/w,. For reference, FE(z) 
is given by 9, in Chin’s notation [3]. At the instability 
threshold Q = Re(Q)+iO and the integral in equation (14) 
becomes 

F,‘(z) = -f{r(l--r)lnlFi--r+1/2} 

-?,(l - T)H(7 - r2), 

where H is the Heaviside function and r = z/t.. The 
threshold calculation proceeds by considering the eigen- 
value problem 

Xbp = -i 2 G,,J?(Q-p+‘Jm) 2 b, x xip(i~)in(id;), 
In=0 n=O l 

(15) 
where Q is fixed and real, X is the eigeuvalue, and K 
is the largest synchrotron mode included in the calcula- 
tion. Consider the set of eigenvalues of equation (15) as Q 
varies, and let X,,, be the largest, purely real, eigenvalue. 
Finding X,,, is equivalent to finding the threshold cur- 
rent for the calculation. The threshold current &hrerh is 
related to the current assumed in the calculation Icnlc via 
I lhrerh = kdc/~maz, since substituting &,,+&, for Icalc in 
the eigenvalue problem results in a unit eigenvalue corre- 
sponding to the smallest current for which the system is 
marginally unstable. 

In practice, it has been found that the range IQ/ 5 K 
is sufficient for determining the real eigenvalues and com- 
puter code has been written to find X,,, for K < 100. 
Studies of existing machines are in progress. 
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