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A bstract 2 COHERENTBUCKET 

For the case of a beam-loaded radio-frequency acceleration 
system, we have found the equation for coherent oscillation 
of the bunch centroid; and we have found the equation for 
incoherent oscillation of an individual particle. Stability 
of coherent motion depends upon the generator induced 
partial voltage, whereas stability of incoherent motion de- 
pends upon the total cavity voltage including the beam 
induced voltage component. For the case of single par- 
ticle motion, stability depends on the synchronous phase 
c$$, With beam loading, the stability of coherent motion 
depends upon 4s + II, + dg, with tuning angle $ and gen- 
erator current phase & , and the coherent bucket is de- 
formed. With beam loading, the stability of incoherent 
motion depends upon &, + &, with beam current phase $b 
and perturbed cavity phase & . 

Let the cavity gap voltage be V, = V,ej#c and the cavity 
complex impedance be R cos $ej* where R is the shunt re- 
sistance and $ is the detuning angle. We adopt the phase 
convention used by Pedersen[3]: that the steady state volt- 
age phasor Vz is aligned with the positive real axis. Let 
the generator current driving the cavity be a fixed vector 
1: = 1&b, which is chosen to produce the correct cavity 
voltage in the steady state. Let the beam image current’ 
be 4 = &--j(r/z++b) h w ere 46 is the phase of the bunch 
centroid measured from the zero crossing of the voltage 
waveform. 

2. I Coherent Bucket Stability Criterion 

The energy change AE of the bunch per cavity is 

AE(h) = Rcos i [cos 4 1412-1g1b sin(~+~,+~b)l(Tc,V/n) , 

1 INTRODUCTION 

The effect of the sinusoidal rf electric fields in a syn- 
chrotron is to accelerate the beam and to longitudinally 
focus beam particles into bunches contained within buck- 
ets. The rf cavities are driven both by the generator cur- 
rent and the beam current. As a result of this ‘beam load- 
ing’, the coherent motion of a bunch taken as a whole may 
differ considerably from the incoherent motion of an in- 
dividual charged part,icle. We shall find the coherent and 
incoherent buckets. 

where 7rev is the revolution period. The energy change 
of a bunch which arrives at the synchronous phase 4, is 
obtained by putting #& = 4, . The motion will be unstable 
if changes in bunch phase produce no change in energy 
increment; in the limit of small oscillations, this implies 
the instability condition 

&AE(+b)14a=m. = 0 Hence arises t.he condition: 

Linear stability analysis[l, 21 shows the frequency Q of 
small amplitude rigid dipole oscillations to scale according 
to 

cos($ + dg + OS) = 0 or + + ~4~ $4, = n/2, 37r/2 , . . 

(1) 

a2 = flf[l - &sin2$/(21” cos’$8)] , 

where O;t, is the synchrotron frequency, Zb/(lo cos $$) is the 
beamload ratio. This scaling suggests that the coherent 
bucket shrinks to zero at some threshold beam current rb, 
but begs the questions: “is the bucket merely scaled in 
height, or is the shape distorted?” 

The physical interpretation of this condition is as follows. 
The cavity voltage can be decomposed into parts due to the 
generator current and the beam current, that is V, = V,+ 
Vb where V, = Rcos$&‘Igej~~ At the stability limit 
the generator induced voltage leads the cavity voltage b; 
r/2 - (6s . Now the steady state beam current leads the 
cavity voltage by r/2 - OS . Thus at the instability limit 
(1) the bunch sits on the crest of the sinusoidal-shaped 
generator-induced voltage waveform. 

While answering these questions, we shall suppose that 
the synchrotron period is much greater than the cavity 
time constant; so that cavity dynamical effects can be ig- 
nored and the cavity response is virtually instantaneous. 
We shall assume that the cavity is detuned in the correct 
sense to avoid the dynamical Robinson instability. 

2.2 Equation for Coherent Oscillation 
For the coherent motion, it is the phase difference between 
the bunch centroid and the zero crossing of V, which is 
important. In the absence of feedbacks, $ and #s are 
constants. Accordingly, we define new variables 

Throughout this paper steady state vector quantities, 
are indicated by a superscript zero, while perturbed vec- 
tors shall carry no superscripts. 

#; = db +d’+ C&j I 

4: = ds+$+4)s. 

(2) 

(3) 
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Angle 4: for coherent motion plays an analogous rGle to 
the synchronous phase $S for single particle motion; mo- 
tion is unstable if either is equal to 7r/2 . 

Let 10 = Vo/R be the generator current if the cavity 
were operating on resonance and with no beam. The beam 
cnrrent modulus is given by 

Ib sin(ti + &) sin(d - G+~) 
lo cos1c, = cos((iss + &) = cos($ - q$) (‘1) 

The generator current modulus is given by 

I 2 cos* = cos(ll) - 4s) cos($ - d,) 
10 cos(q4 + 6,) = cos(ti - &) (5) 

It will be useful to define the factor U 5 (Ig/lo) cos $J . 
For the normal mode of operation with 0 2 4 < x/2 and 
I, > 0 the function Ii is always greater than zero, but is 
very small for large tuning angles. 

Let the bunch contain Nb particles of charge (I. For 
brevity, 1Pt Eb = E(&) and E, = E,(dS) be the bunch 
centroid energy and the synchronous energy, respectively. 
The rate of relative energy change obeys 

&b-E*) = - Rca~~~g~b[sin(~~+~g+~b)-sin~~~+~~+~~)] , 

Now the bunch current, is lb = qNh/r,,, and the syn- 
chrotron has n radio-frequency cavities. Hence the accel- 
eration rate is 

Tie+.&& - E,) = -nqR CDS $I,[&& - sin$:] (6) 

Suppose h is the harmonic number. In the absence of any 
frequency error, the rate of change of phase is 

$4; = z 71 cEb; E*) 
s 

(7) 

and E, = ~smgc2 and ryP is the momentum compaction 
factor. Here we have assumed p = v/c = I . After com- 
bining equations (5), (6) and (7), the equation for coherent 
oscillations is 

Trevg [%$dk] = -ng\‘,lj[sindb - sin$:] (8) 

Apart from a prefactor Ii which alters the bucket height. 
this is just the equation for synchrotron oscillations about. 
a stable phase angle 4: Immediately from (8) we rCC- 
ognize that for given 6,, curves such that d:(l/l,Ib/ly) = 
constant are curves of constant bucket length and (apart 
from a height scale fact,or) constant shape. 

2.3 Coherent Stability Limits 

In general, thP beam-loaded coherent bucket behaves like 
a moving-bucket (4: # 0), even when the beam is not 
accelerating (QJ = 0). Thus. the pha.se and energy extent, 
of stable oscillations diminishes as the beam load increases. 

2.3.1 Small oscillatzons To find the limit of stability: we 
substitute c$: = T/Z into equations (4) and (5). The 
threshold beam current value is identical with power- 
limited instability threshold derived by Robinson[l]. 

The important consequence of the deformation of the 
coherent bucket by beam loading is that a beam may be 
unstable for large amplitude coherent synchrotron oscilla- 
tions well before the Robinson limit is reached. The nature 
of the large amplitude motion is determined by 4: , but is 
modified by the scale factor fi 

The condition U = 1 I given by the curve of values 

Ib/lO = 2sin($ - ~$,)/cos $b , (9) 

has a special significance: below it, bucket height falls more 
rapidly than we should guess from C#J: alone; and above the 
curve, bucket height is boosted. 

The quantities I$: and U are plotted in Reference[4] as 
functions of beam load ratio and tuning angle for a variety 
of synchronous phases. For some applications the coherent 
bucket length, height and area might be more useful quan- 
tities, and these parameters are presented in Reference[J]. 

2.4 Coherent Bucket Shape 

The separatrix for coherent motion is called the coherent 
bucket. The bucket coordinates are the bunch energy with 
respect to the synchronous energy (i.e. Eb - E,) and the 
bunch centroid phase (&,) with respect. to the zero crossing 
of Vz The centre of phase motion is &, or dJ with 
respect to the zero crossing of the cavity waveform Vz 
The maximum extent of oscillations about c$~ is ir - 24:. 

It is useful to introduce the frequency R, defined by: 

62; = q n I’O h q/ (T,“,, E,) . 

Equation (8) is derivable from the function: 

(4;)” = 2n3u {cosq5: + cos d: + sin d:[& + ~3: - ~1) , (10) 

whose condition also gives the coherent bucket. 

3 INCOHERENT BUCKET 

We shall derive the bounding bucket for incoherent mo- 
tions of individual particles. The derivation manifests the 
fact that under conditions of beam loading the incoherent 
bucket moves with the bunch centroid. 

3.1 incoherent Bucket Stability Criterion 

Let the phase of an individual particle with respect to the 
bunch centre be C$ such that t,he phase with resI)ect to the 
zero crossing of unperturbed voltage Vi is C+& + Q . If the 
bunch phase is not equal to c$~ , then the cavity voltage 
will deviate from the steady state value; let the new value 
be V, = I/cej@c Let the individual particle contribute 
a current phasor 61 = -jge-j(4btm)/rrrev where (I is the 
charge. Thus, the individual particle energy change at the 
acc&rating cavity is 
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CAE(h -I- 4) = -4 c V, Sin(dJb -t- 4, i- d) . 

The motion will be unstable if changes in particle phase 
produce no change in energy increment; in the limit of 
small oscillations, this implies the instability condition 

-$AE(db + 4) Io=o = 0 Hence arises the condition 

‘=S(4b + h) = 0 or $b+& = n/2, 3n/2,... (11) 

The incoherent motion is unstable when the perturbed 
beam current -Ib and the perturbed cavity voltage V, 
are in phase. This corresponds to the case that the bunch 
sits on the crest of the perturbed cavity voltage waveform. 

In fact, the condition & + & = r/2 is quite hard to 
arrange, particularly at large beamload values. This is 
because as & increases, so 4, decreases. Given & is a 
function of $b , so one ImISt find a self-consistent solution 
of (11). If solutions & exist, then they must satisfy 

- COS($’ + dg + db) = 
sin $sin(lC, + &) < 1 

cos(ll)-43) - 

Clearly n/2 < 4 + ds + &, < 37r/2 for instability to occur. 
Moreover, at sufficiently large values of the detuning angle 
4 2 li, no solutions $b can be found. The angle 11 is the 
solution of the equality sin $ sin($ + b9) = cos($ - d3) 

3.2 Equation for Incoherent Oscillation 

For incoherent motion, it is the phase difference between 
the individual particle and the perturbed cavity voltage 
V, which matters. Accordingly, we define a new variable 

$6 = ‘i’b + dc (12) 

Here x/2--4, is the phase difference between the perturbed 
beam current -1b and the perturbed cavity voltage V, . 
Angle 4, for the incoherent motion plays a similar role 
to 4, in single particle formulations of the phase motion; 
whenever either is equal to 7r/2, the motion is unstable. 

The relative energy change of an individual particle with 
respect to the bunch centroid is 

hE(db + 4) - AE(&) = -qv, [sin($, + 4) - sin( 

S_o the problem has been reduced to that of finding V, and 
@s We find the forms 

Vc sin 4, = Vo {sin dS + li [sin 4; - sin&]} 

v, cos & = V~{cos~,+cr[cosl$~ - cosqs:]} .(13) 

For brevity we shall write E, = E(‘$b + 4) to mean 
the energy of a particle with phase 4 with respect to the 
bunch centre, and E, = E(@,) to mean the energy of the 
particle which always arrives at the synchronous phase. 
The equation for phase advance is 

-!$ = !g,(Eg;Eb) 
* 

After incrementing the energy through n cavities, the 
equation for incoherent oscillations is: 

f [Et$?.$p] = -yF -2 [sin(JS + I$) - sin JS] , (14) 

where 4, and V, are obtained from equations (13). Equa- 
tion (14) is that for synchrotron oscillations about a stable 
phase angle (b, . If 66 = bd , then 4, = 4, and V, = VO; 
and if also & = E, then equation (14) reduces to that for 
single particle motion. 

Let Us = COS(I/J - d,)/sin$~ For the case 4: = 7r/2, and 
small displacements ]$b - 6,] < 1 we find 

w/w2 % 1 - (&-&)2th,CoS$, and 

tan6, =tand8[1 $ (db-dJs)[~O/cos~s] 

Hence, even at the limit of stability for coherent motions, 

the incoherent bucket is only slightly distorted when the 
bunch moves away from the synchronous phase; and the 
beam stays bunched. 

3.3 Incoherent Bucket Shape 

The separatrix for incoherent motion is the incoherent 
bucket. The bucket coordinates are phase and energy with 
respect to the bunch centroid, that is 4 and (E,-&) The 
stable point of the motion (6 = 0) is located at &(t) with 
respect to the zero crossing of the unperturbed waveform 
Vz The incoherent bucket length and shape, however, 
depend on 4, The maximum extent of oscillations about 
&, is C$ = r - 24, . 

Equation (14) is derivable from the function: 

w/2nS(Klv,) = 

{cos(J,+~)+cosJ, + siniJ[$+2&, -r]} , (15) 

whose condition also gives the incoherent bucket. 

4 CONCLUSION 

For the case of a beam-loaded radio-frequency acceleration 
system, the coherent bucket is distorted and large ampli- 
tude motions may be unstable well before the Robinson 
limit is reached. The stability and distortion depend on 
$: = qL + $ + g$ and U. 

For the case of a beam-loaded rf system, the incoherent 
bucket is ‘pinned’ to the bunch central phase &. The 
stability and distortion of the incoherent bucket depend 
on is = & + 4, and V,/Vo. However, provided that and 
& M 4, and Eb M E, , the incoherent bucket is found to 
be only slightly distorted. 
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