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Abstract 

Conditions for the lowest possible emittance of the lattice‘ 
for electron storage rings are obtained by a simplified an- 
alytical approach. Examples of electron storage lattices 
with minimum emittances are presented. A simple graph- 
ical presentation in the normalized dispersion space (Flo- 
quet’s transformation) is used to illustrate the conditions 
and results. 

1 INTRODUCTION 

Electron storage rings are often used to produce high bril- 
liance synchrotron light sources. The lower the transverse 
electron beam emittance the higher the brightness of the 
emitted light. The light is emitted in the direction of mo- 
tion of the relativistic electron beam. The synchrotron 
light fans out tangentially to the dipole arc. At the point 
of emission an rms solid angle of the emitted light is in- 
versely proportional to t,he Lorentz factor (l/y) - beam 
energy. The transverse horizontal emittance is: 

Es = $$ (H)dipole, I (1) 

H = rzD: + ZdLd, +A&, (2) 
where C, = 3.84 lo-l3 m, the horizontal partition factor 

J, ci l+f$ 2: 1, (II) = l/LdJi”IIds, (Y, p, and 7 are 

the Courant-Snyder parameters, while 0, and d, are the 
horizont,al dispersion function and its slope. The minimum 
transverse emittance is achieved by minimizing the average 
integral of the function II, over the length of the dipole. 
To illustrate this requirement it is useful to use Floquet’s 
coordinate transformation [l] for the dispersion function 

ad [=& ,,‘&& (Y, 
a’ (3) 

then the function H is presented as: 

H=X2+(2, (4) 

,y = fi siiuj, ( = fi cos+b, (5) 
where 4 is the betatron phase advance. In the normalized 
dispersion coordinate system t.he vertical axis is chosen to 
be x. The dispersion function satisfies the second order 
differential equation of motion: 

ii(s) + K,(s)D(s) = f, (6) 

*Work performed under the auspices of the U.S. Departwent of 

Energy. 

where ICE(s) = + - $- s. The presence of a dipole 
in the lattice is maniAted i,n jhe normalized x and t 
dispersion,space as a change along the horizontal axis of 
A< = AD=fl, where AD, = 0 (change of the slope of 
the dispersion function is equal to the bending angle of 
the dipole). The amplitude of the function H will depend 
on the dipole position in the lattice. Outside the dipoles 
(+=O) a solution of the homogeneous differential equation 
6 represents a circle as equation 4 shows. The Chasman- 
Green lattice where the dipoles are approximated by the 
thin lens approximation, is presented in the normalized 
dispersion diagram in fig.1. Two dipoles lie on the hori- 
zontal axis. A part of the lattice with the zero dispersion is 
located at the origin of the x and < normalized dispersion 
diagram. The end of the second dipole in fig. 1 is con- 
nected to the beginning of the first dipole by the semi-circle 
shown in equation 4. The minimum possible radius of the 
semi-circle corresponds to the smallest possible emittance. 
The size of the radius is determined by the dipole. Fig.1 
shows both the idealized case where two vectors represent 
dipoles in the lowest possible Chasman-Green lattice and 
a single vector in the middle of the C; axis representing the 
lowest possible emittance lattice. The real lattices are pre- 
sented as well at the same fig.1 where dipoles have curved 
lines (fl) due to a change of the betatron phase through- 
out them. 

) 1 Minimum Emittance 

Fig. 1 Thin element approximation of the Chasman- 
Green minimum emittance lattice and of the lowest 
emittance lattice - where dipoles are horiz. vectors. 
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2 SIMPLIFIED ANALYTICAL 
APPROACH 

As in [2] [4], we neglect the centripetal focusing in dipoles 
and approximate the horizontal B function and horizontal 
dispersion function D at quadratic functions of s: 

p=?O+;; &=-$; hi&+$; Df=$. (7) 

The mean value of H in the dipole is: 

. 
(8) 

The slope of the dispersion function D’ and the betatron 
function Q are equal to zero at the center of the dipole (a 
center of symmetry). Thus 8 becomes 

(H)=~[D$-%+%]+% (9) 

To minimize the emittance we minimize 9 with respect to 
the central values DO and ,&.(with given L and 8). We 
find 

Po= L 
ZyE’ 

DO = g and (H) = eLJ2. 
24 180 (10) 

3. LATTICE DESIGN PROCEDURE 
To obtain the values 10 at the center of a dipole we de- 
sign a symmetric module, half of which consists of half 
of the dipole (length L, bending angle 8) plus a pair of 
quadrupoles. The strengths of the quadrupoles and their 
locations are free parameters; we may adjust these so that 
the central values of the functions are 10. Since there are 
more free parameters than constraints, we may also adjust. 
the central value of the vertical p function and the overall 
length of the module. 
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The basic module of the lowest possible emittance lattice is 
presented in the normalized dispersion space in fig.2 while 

the betatron functions are presented in fig.3. 

Fig.3 Basic Module of the Lowest Emittance Lattice 
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3 ZERO DISPERSION FOR THE 
INSERTION DEVICES 

It is often desirable to have straight sections in the ring 
with zero dispersion, to accommodate RF cavities and in- 
sertion devices. A lattice has been devised in which a sec- 
ond module containing a zero dispersion section is added 
with suitable matching of the orbit functions. The lattice 
required a shorter dipole to provide the zero dispersion at 
its end. 

4 CHROMATIC CORRECTION 

The linear chromaticity was corrected by the standard two 
families of sextupoles close to the focusing and close to the 
defocusing quadrupoles at positions where the horizontal 
dispersion has maximum values. The position of the sex- 
tupoles was chosen to minimize the second order tune shift 
introduced by them as well. An additional module was 
added to the lattice with the same design procedure as de- 
scribed above. The length of the second module was varied 
to allow the for the betatron phase difference between the 
sextupoles to be close to a multiple of 90’. The ampli- 
tude distortion functions [6] ), could be presented as vec- 
tors which rotate in the betatron phase space with phase 
angles between the setupoles [7] as: Bl(&), B3(3&), 
B-(2& - &), and B+(2&, + I$=). The second order tune 
shift induced by the sextupoles was: 

vy = 2.312 - 6.8 E, - 91.0 Ed. (12) 
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5 EXAMPLES OF THE MINIMUM 
EMITTANCE LATTICES 

An example of a minimum emittance lattice is shown in 
fg.4. There are two basic modules constructed by using 
the same initial conditions. 

Fig.4 Low Emittance Lattices in the Normalized Dispersion 
WV-NSLS and Iha Lowasl Ehttanca latlioe 
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The electron energy was chosen to correspond to the en- 
ergy of the UV ring of the National Synchrotron Light 
Source (NSLS) at Brookhaven National Laboratory. To 
be able to compare this example with the other similar 
lattices the dipole length and number was chosen to be 
the same as in the UV NSLS ring (Ld=1.5 m and Nd=8). 
The basic module cosists of the dipole surounded by two 
triplets where the central quadrupole is the defocusing 
quadrupole. In the second module which starts at the 
middle of the dipole there are two defocussing quadrupole 
sepatated by a drift. The chromaticity of this example is 
higher than the one of the existing UV ring in NSLS. But 
the sextupole correctors have a very reasonable strength 
of KSF=4.38 me2 and KSD=-3.77 nze2. The quadrupole 
gradients were chosen not to exceed 15 T/m. The trans- 
verse emittance of the present UV ring at NSLS was re- 
duced to the mimimum possible value of 8.68 low7 mrad, 
compared to the existing emittance of 1.3 10m6 mrad. By 
the same procedure few other examples have been designed 
with the parameters of the X-ray ring at NSLS and of the 
X-ray ring of Argonne National Laboratory (ANL). The 
emittance of the X-ray ring at the NSLS was reduced to 
the minimum possible emittance by a factor of 8.8, while 
an example of the X-ray ring at the ANL was reduced 
by a factor of 11.27. The examples to be compared with 
the X-ray NSLS and to the ANL X-ray had the same Iat- 
tice elements, most importantly the same dipoles. In the 
X-ray ring example to be compared to the NSLS ring an 
additional qaudrupole was introduced. 

6 CONCLUSION 

We repeated the analysis [4] for obtaining the conditions 
for the minimum emittance lattice of the electron storage 
rings. Conditions for the minimum emittance show that 
dispersion function in the middle of the dipoles should have 
a small value but not zero Do = %$ and that the hori- 
zontal betatron function should have a mimimum at the 
middle of the dipole with a value of ,f& = $& These 

initial conditions where applied and few examples of the 
minimum possible emittance wgre designed and presented 
in detail. We used Floquet’s coordinate transformation to 
ilustrate the design procedure. It is possible to reduce the 
sextupole second order tune shift with amplitude by con- 
structing lattice modules where betatron phase differences 
between sextupoles is mutiple of 90’. We show that the 
transverse emittance of the existing electron storage rings 
can be easily reduced to the minimum possible value by 
either different settings of the existing quadrupoles or, in 
some examples, by introducing an additional quadrupole 
or by repositioning the existing quadrupoles. We hope 
that this work will help in the future electron storage ring 
design as well as existing rings. 
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