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Abstract 

We describe algorithms for reconstructing tune, closed- 
orbit., beta-function and phase advance from four individ- 
ual turns of beam orbit, acquisition data, under the as- 
sumption of coherent, almost linear and uncoupled beta- 
tron oscillations. To estimate the beta-function at, and 
phase advance between, position monitors, we .require at 
least one anchor location consisting of two monitors sep- 
arated by a drift. The algorithms were submitted to a 
Monte Carlo analysis to find the likely measurement accu- 
racy of the optics functions in the KAON Factory Booster 
ring racetrack lattice, assuming beam position monitors 
with surveying and reading errors, and assuming an im- 
perfect lattice with gradient and surveying errors. Some 
of the results of this study[2] are reported. 

1 INTRODUCTION 

The primary motivation for studying the 4-turn algorithms 
was the anticipated poor measurement accuracy of beam 
related variables in a fast-cycling machine. In a syn- 
chrotron, the lattice optical properties must be measured 
and corrected at several time intervals during the magnet 
field ramp because tracking errors will cause them to vary. 
Conventional optics measurement techniques (e.g. tune 
vs. quadrupole strength), as used at storage rings, are in- 
appropriate for a rapid cycling (50Hz) synchrotron where 
the optics may change during a lengthy measurement. 

1.1 Operating modes of KAON Booster 

The proposed TRIUMF KAON Factory has recently been 
cancelled. The Booster[l] accelerator design included lat- 
tices with achromatic arcs and long dispersionless straight 
sections. Dispersion is suppressed by choosing the tune of 
each arc to be an integer. The overall horizontal tune, is 
set using the straight sections. There are two high current, 
modes, 2nd and 1st order arc achromats. There is also a 
polarized running mode in which the optics is re-tuned to 
give spin transparent straights. The closed orbit will have 
to be corrected for each operating mode. Further, the fo- 
cusing strength has to change considerably, which implies 
possibly severe distortion of the beta-function - unless the 
powerful trim families are carefully controlled. 

Tuning the optics requires setting and measuring partial 
tunes across arcs and straights, and careful measurement 
and control of beta-function. For second order achromat 
running, partial tune errors of lS~l~” = 0.01 per arc are 
not significantly damaging. For polarized running, partial 

tune errors of lb~~I~.*. = 0.01 per straight are tolerable. 
The betatron tune should be controlled to 16~1 < 0.01, 
and measured to Ib~l 5 0.0025. 

1.2 Single turn orbit acquisition 

The diagnostic technique of single turn beam orbit acqui- 
sition means the ability to record a snap-shot of the beam 
transverse displacement at many locations around the ring 
over the course of a turn, and to do this for several turns. 
This allows the possibility for rapid tune and closed orbit 
measurements, and for reconstruction of the beta-function 
without varying individual quadrupole strengths. 

2 4-TURN ALGORITHMS 

If the position monitor is error-free, then the turn-by-turn 
position is L* = X c.o.d. + A cos[# + w] + D AP(~)/PO 

for the beam centroid. Here p = 2nv is the phase advance 
per turn, A = fl and 4 are the betatron amplitude and 
phase at the particular monitor; subscript n indicates the 
turn number. 
4-turn tune estimate 

Following Risselada[S] algebraic manipulation gives the 
4-turn tune estimate at each position monitor as: 

COSP = [(Q - XI) + (24 - Q)]/2(Q - 0) / 

which is not biased by any systematic monitor error. An 
analytic estimate of the accuracy is given in Reference[2]. 
4-turn c.o.d. estimate 

The closed orbit estimate at each monitor is given by 

xc.o.d = [23(x, + z3) - tZ(Z2 + %4)]/[(xl - 24) + 3(53 - x2)] 

This algorithm does not reject systematic monitor error, 
and requires an on-momentum beam. 

2.1 Monte Carlo analysis 

The 4-turn measurement has the advantage that it is quick; 
and the variation of closed orbit and tune over such a short 
time period should be very small. Some penalty must be 
associated with making inferences from less data, and so 
a Monte Carlo error analysis is reported below. 
Machine errors 

The following statistical error model is used for the per- 
turbed lattice: f0.25 mm r.m.s. and f0.50 mm r.m.s. 
transverse displacement for bends and quadrupoles, re- 
spectively, in horizontal and vertical planes; ~kO.50 mm 
r.m.s. longitudinal displacement, f1.0 mrad r.m.s. and 
*10m3 roll and relative fractional strength, respectively, 
for all elements; hl.0 mrad r.m.s. tilt for bends. 
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BPM errors 
The Beam Position Monitors (BPMs) are taken to have 

systematic errors and random errors. For a particular 
BPM, the systematic error is the same every time we read 
that monitor; but the random error may change each time 
we read it. We take systematic errors with r.m.s. deviation 
(T, = 0.75 mm and random errors with up = 0.25 mm; and 
both errors to be truncated at 3 x (T . The total number 
of BPMs was 30 in each plane, horizontal and vertical. 

We considered an ideal lattice with fractional tunes 
V, = 0.35 (or 0.650), vy = 0.40 (or 0.60), and a perturbed 
lattice with fractional tunes V, = 0.35085, vr, = 0.38533 . 
A statistical analysis of 20 different perturbed lattices, gen- 
erated with DIMAD, showed this to be a typical lattice. 

2.2 Indication of c.o.d. measurement accuracy 

We attempted to find how accurately the 4-turn algorithm 
would predict the closed orbit distortion, assuming an on- 
momentum beam. We took an ideal lattice for which 
Y / c.o d. = 0 everywhere. Note, it is neither desirable nor 
necessary to kick to measure closed orbit; however, in or- 
der to model some coherent motion (which prevents easy 
measurement of the c.o.d.) we chose to prepare this by 
kicking; results are insensitive to strengths 0.1-1.0 mrad. 

From each of 60 trials (with different BPM random er- 
rors), we obtained a set of c.o.d. estimates, one per moni- 
tor location. The results are averaged over all active moni- 
tors and then averaged over all trials. We can expect, from 
a single trial, to estimate the true closed orbit distortion to 
52 mm. Repetition, and averaging over 3-4 trials reduces 
the error to &I mm horizontal and vertical. 

2.3 Indication of tune measurement accuracy 

We attempted to find how accurately the 4turn algorithm 
would predict the betatron tune. The method is to take a 
beam initially on-axis, kick it transversely to give a coher- 
ent oscillation, and then record tracks on four turns. The 
c.o.d. in the perturbed lattice is corrected using BPMs 
with reading errors and steering magnets before the tune 
measurement. In order to state the ‘likely’ error in a typ- 
ical single tune measurement, we made 60 trials. 
Sextupoles off Assuming a 1.0 mrad initial kick, the 
tune can be established with accuracy of f0.002 after 1 
trial. Using a weaker 0.3 mrad kick, one needs 4-5 trials 
to achieve the desired accuracy. 
Sextupoles on Assuming a 1.0 mrad initial kick, the 
tune non-linear shift can be resolved with confidence after 
averaging over 16-20 trials. 

3 BETA FUNCTION AND PHASE ADVANCE 

STURN ALGORITHM 

It is possible with a single turn orbit acquisition system to 
reconstruct the periodical beta-function (as sampled at) 
and phase advance between BPMs. There is no need to 
know the closed orbit, nor to use an on-momentum beam. 
We now present an algorithm for finding (p, 4); though we 
discovered it for ourselves, we later found it to be similar to 

that of Reference[Lt]. The principle is to find the absolute 
Twiss parameters at one particular location (the ‘anchor’), 
and to propagate /3 and r,!~ to other locations. 

3.1 Finding a principal trajectory 

Let C and S be the ‘principal trajectories’. For displace- 
ment y and divergence y’ about the on-momentum closed- 
orbit, the values at general location s downstream of so 
are given by: 

Y 
[1 [ Y’ $= 

C(a,so) S(3, 30) 

C’(a,so) S’(a,so) $ ’ I[ 1 (1) JO 
Suppose there is: (i) an anchor point, SO, where we can 

measure both y and 9’; (ii) a position monitor at location s. 
Suppose the beam makes a coherent oscillation, and that 
we record Y(Q), Y/(Q) and y(s) on two turns. The two 
data sets, labelled by subscripts 1 and 2, can be written 
as follows: 

[:i:;] = [ ;i;:; $::;I [9;:::;] (2) 

which can be inverted for C and S 
The effect of closed orbit distortion X, o.d. and disper- 

sion D(s) (on a beam with average off-momentum Ap/pa) 

y’(3) = Xc.o.d. + Y(so)C(a, 30) + y’(ao)s(s, $0) + D(a)Ap/m . 

can be removed by taking the difference between two 
turns. Hence we introduce the difference quantities (3) 

yzl (4 = Y; (4 - Y; (4 Y;,W = au,, ias . (3) 

which transform between the two locations as equation (1). 
If we supplement this with an equation for the differences 
of two more turns, then an analogue of (2) may be used to 
fmd the functions C and 5’. We now use yi, yz etc. as a 
shorthand for Yzl, Ysz etc.. 

Let the length of the closed orbit be co. At the anchor 
we can find all elements of the transfer matrix. Let us 
label the data sets by the subscripts 1, 2, 3. To obtain the 
one-turn principal functions, we invert the equations: 

[ :::::;I = [ 
YZ(30) Y:(ao) 
Yl(30) Y:(ao) ] [$zx;] f4) 

[ $;I = [ 
Ydao) Ye 

YI (30) yl(ao) ] [ ;:;:;,‘:;;:;j] (5) 

The Twiss parameters are given by the identities: 

2 cm 2nv = cts’, 2a(ao)sin2av = C - S’ (6) 

/3(so)sin27rV = S , y(so)sin2rru = -C’ . (7) 

Propagation of 8 from the anchor to another location is 
performed by the identity: p(s) = 

C2(3,30)P(30) - 2C( 3,30)S(a, SO)~(~O) + S2(a, so)r(ao) . (8) 

The phase advance I$(s, se) from the anchor to another 
location can be found from 

S(s, SO) = J@EGiJsin $(s, s0) (9) 
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37.3 , j I 3.2 Accuracy of beta and phase measurement 

We tried to estimate the accuracy with which beta- 
function and phase-advance can be measured by analysis of 
multi-track data for the KAON Booster ring. The proce- 
dure is to take an ideal lattice, add random alignment, tilt, 
strength, etc. errors and then (using BPMs with errors) 
correct the closed orbit; then for the corrected lattice make 
an attempt to reconstruct /3(s) and phase advance d(s, se) 
(as sampled at monitor locations) from BPM readings with 
errors. It was immediately clear that a single trial could 
not produce the desired accuracy, and the Monte Carlo 
analysis is based upon averaging over 17 trials 
Anchor position monitors 

The separation of the two position monitors comprising 
the vertical and horizontal anchors is 2.5 m and 1.5 m 
of drift space, respectively. The longitudinal error in the 
location at which an anchor BPM makes its reading is 
1.0 mm r.m.s. truncated at 3 x u. 
Dependence on kick strength 

We compared results for two different strengths of the 
initial coherent kick. For the 0.3 mrad kick, despite the 
large systematic error, nevertheless one could distinguish 
the regularity of the arc beta-function. For the 1.0 mrad 
kick, figure 1 shows the nicely reconstructed vertical op- 
tics functions; solid lines are exact values from DIMAD, 
and broken lines are measured values. For the 1.0 mrad 
kick, figure 2 shows the absolute phase errors and rela- 
tive beta function error. The horizontal beta function is 
indistinguishable (by eye) from the DIMAD values. 
Figures of merit, etc 

We have tried to give some ‘figures of merit’ which typify 
how well an average BPM reconstructs the optics. We 
took the data which is already averaged over trials, and 
averaged the values over monitors. Hence (A/3) is the likely 
beta-function-error averaged over monitors and u[A,0] is 
the standard deviation about the mean error; and similarly 
for the other tabulated quantities. 

kick 
Case (mrad) 
Hori 0.3 

i‘V$Po) +W$%J 

0.20 0.72 1.3 8.9 
Hori 1.0 -0.05 1 0.25 11 -.45 1 2.9 
vert 1 0.3 /I 5.7 1 4.4 1) 71.6 1 70.3 
Vert Vert 1.0 1.0 

kick 

1.1 1.1 0.95 0.95 

(A&od) @Xl 

12.7 12.7 5.3 

(A+) 4Wl 
Case (mrad) (mm) (mm) (ded (ded 

l~i Hori 0.3 ,015 0.82 0.69 23.0 
Hori 1.0 ,010 0.82 0.84 10.8 
Vert 1 0.3 11 -.16 1 0.68 11 -0.85 1 14.7 
Vert 1.0 -.18 0.71 -0.64 4.6 

From the r.m.s. values in the table, it is clear that the From the r.m.s. values in the table, it is clear that the 
weaker kick (0.3 mrad) is not sufficient for beta and phase weaker kick (0.3 mrad) is not sufficient for beta and phase 
measurement. The strong diagnostic kick (1.0 m&d) is 
satisfactory, though the peak errors in phase advance are 
disturbingly large (Fig.2). The errors could be reduced 
by increasing the number of anchors and/or by developing 
some method to better reject outlying observations. Note, 
the accuracy of a single trial is inadequate, and usually 
one must average over something like 6-8 trials 
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Figure 1: Measured vertical lattice functions. 
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Figure 2: Error in measured vertical lattice functions 

4 CONCLUSION 

For the KAON Booster ring we have studied by Monte 
Carlo simulation the accuracy of methods for obtaining 
bare tune, closed orbit, (coherent) beta-function and par- 
tial tune of straights and arcs from analysis of beam tracks. 
A single 4-turn measurement does not provide adequate 
measurement accuracy. With 16 turns of memory for ev- 
ery beam position monitor, it is possible to measure the 
overall tune to ~kO.002 (or better) for a lattice with im- 
perfections and chromaticity correction. The same system 
can measure the closed orbit to fl.O mm. This is against 
a background of systematic errors 0.75 mmr.m.s. and ran- 
dom error 0.25 mm r.m.s.. Measurement of beta-function 
and phase-advance required a diagnostic kick strength of 
1.0 mrad to achieve acceptable accuracy. A relative accu- 
racy A/3/& of 3-5 % and absolute accuracy Ad of 5-10 
degrees can be obtained from averaging over 16 turns of 
orbit acquisition. 
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