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Abstract 

A generic four-dimensional model representing the nonlin- 
ear betatronic oscillations of a single particle in a mag- 
netic lattice for hadrons is considered. The classification 
of the different resonances is given and the computation of 
the corresponding normal form invariant is outlined. The 
analysis of the interpolating Hamiltonian of the resonant 
normal form allows to determine fixed points, fixed curves, 
location and width of resonances; a complete classification 
of the geometrical structures of the phase space is outlined. 
Some numerical plots of the corresponding phase space are 
given. 

1 INTRODUCTION 

A crucial problem for the analysis of long-term stability of 
betatronic motion in large hadron accelerators is the un- 
derstanding of the geometry of resonances which naturally 
arise from the nonlinearities introduced by superconduct- 
ing magnets [l]. Whilst in the 2D case the geometry of the 
orbits is well understood [2], in the 4D case only a few re- 
sults are known and the higher dimensionality of the phase 
space makes the problem very hard to be understood. 

A relevant analytical tool for the analysis of resonant 
orbits is based on the perturbative theory of resonant nor- 
mal forms [3]; using this approach one can determine the 
geometry of the resonant orbits, and moreover one can 
compute perturbative expansions for a wide class of non- 
linear quantities that characterize both the geometry and 
the dynamics, such as the frequencies, the location and 
stability of the resonant orbits. Resonant normal forms 
have been successfully tested for the 2D caze on both sim- 
ple and complicated mappings [2]. 

In this paper we outline a generalization of this approach 
to a 4D phase space for the case of single resonances [4]; 
resonant normal forms are used to symmetrize the map 
and to associate an Hamiltonian which exhibits explicitly 
a complete set of prime integrals and whose phase space 
can be completely understood. One finds a rich variety of 
structures: the perturbative analysis shows that, besides 
2D KAM tori, one has one-dimensional elliptic and hyper- 
bolic fixed lines when single resonance conditions are met, 
and 2D KAM tori around the elliptic lines. Two types of 
fixed lines exist, according to the different types of reso- 
nances (coupled or uncoupled). Fixed points arise in the 
case of double resonance, which are not analysed here for 
the sake of brevity. 

2 4D BETATRONIC MOTION 

We consider the motion of a single particle in a circular 
magnetic lattice of L magnetic elements. We denote with 
z, y the horizontal and vertical axes perpendicular to the 
orbit, with 8 the curvilinear coordinate, and with SL the 
total length of the machine. Neglecting the coupling with 
the longitudinal motion, we analyse the dynamics in the 
transverse plane (2, y). The conjugate momenta are the 
dimensionless quantities pZ G dz/da, pY E dy/da, and the 
motion takes place in a 4D phase space x = (z, pI , y, pY). 

The standard approach based on the map formalism [3] 
consists in analysing the map which transforms the initial 
coordinates of a single particle to the coordinates of the 
particle after one turn of the machine: 

x’ = M(x) x’ E X(8&) x E x(0) x E R4. (1) 

M is a nonlinear map whose linear part is the Twiss ma- 
trix [5]. Let V be the transformation which diagonalizes 
the linear part of M, and transforms it into the map F 

F(z) = V-‘M(Vz), z E c’ (2) 

where z = (zi,Zi, 22, z;) are the diagonal coordinates, and 
the * denotes the complex conjugate. F explicitly reads 

2; = t+ 21 + ~[FIln(Z) 
?I=2 

%; = eiwt 22 + C[F21n(z), (3) 
?I=2 

where WI and wa are the linear tunes, and [.F’i]n denote ho- 
mogeneous polynomials of order n in the variables; since 
the map M is real, the second couple of equations for the 
components F,‘, Fi are complex conjugated of the first 
couple and therefore can be omitted. 

3 RESONANT NORMAL FORMS 

The normal form approach [3], [6] is the natural generaliza- 
tion of the canonical perturbation theory for hamiltonian 
flows to symplectic mappings: given a symplectic map F 
in a 2n-dimensional phase space, having a fixed point in 
the origin, one looks for a nonlinear transformation 9 such 
that F is transformed to a new map U that is ‘particularly 
simple’, i.e. that has explicit invariants and symmetries. 
The map U is the normal form. The conjugating equation 
of the map to its normal form reads 

*-’ W@(C))) = U(C), (4) 
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where C are the new variables in phase space, called nor- 

In order to analyse the geometry of the orbits of the 

mal coordinates. U is invariant under a symmetry group 

normal forms, one has to build an interpolating Hamilto- 

generated by a linear transformation A,, i.e. it commutes 
with A 

nian R whose orbits interpolate the orbits of U; since U 

=: 

commutes with the symmetry group, one has 

this symmetry condition defines the normal form 
U and the conjugating function h (up to a gauge group). 

The existence of a formal solution is guaranteed by the- 
orems that state that one can build a normal form U with 
respect to the symmetry group generated by the linear 
part of the map A,, or subgroups of it. In the generic case 
the series are divergent; indeed, one can prove that, since 
they are asymptotic, optimal truncation can provide very 
accurate approximation of the dynamics of the nonlinear 
map: this has allowed applications to numerous problems 
of accelerator physics [6]. 

ww = W). (5) 

In the followings, we will use the coordinates (or, ~a,&, 0,) 

%1 = fieiea %a = &eie2, (6) 

where the Hamiltonian H(C) is transformed to 
qPl,P2,~1,b). 

4 GEOMETRY OF RESONANCES 

4.1 Resonance conditions 

Given a matrix A, = diag( eial , eeiOl, eiaa, eeial), accord- 
ing to the properties of (x = (at, aa), one can have different 
groups generated by A,. Let k = (ler , ka) be an integer 
vector; the resonance condition reads 

aekE 

therefore one can have the following cases: 

l Nonresonant case; Eq. (7) implies k = 0. 

l Single resonance; Eq. (7) implies k = lel, where et is 
a 2D vector with integer entries; one can distinguish 
between uncoupled resonance [i.e. ei = (g, 0) or el = 

(0, q)] and coupled resonance [i.e. er = (II, -p) with 

p#Oandq#01- 
l Double resonance; Eq. (7) implies k = Zler + lzez, 

with el and ez linearly independent vectors with in- 
teger entries. 

4.2 Single uncoupled resonance 

Let us analyze a mapping in the neighbourhood of a single 
uncoupled resonance condition et = (q, 0), i.e. whose lin- 
ear frequencies are wi = 2lrp/q+e and wz/(2z) E R\Q; in 
order to analyse the geometry of the resonant orbits one 
can build the resonant normal form U(c) and the inter- 
polating Hamiltonian H(C), which is invariant under the 

group generated by A,, with Q = (2np/g,wz). One can 
prove that the Hamiltonian h has the form 

h = c hka,k,,l P;‘+rq’aP$a COS(h@l + ‘Pkl,k,,l)- (8) 

kl,h,f 

We restrict ourselves to analyze the generic case in which 
hc,o,i # 0, and at least two of the coefficients hz,o,o, ht,i,o, 
ho,z,o are different from zero; moreover we consider reso- 
nances of order q > 5; truncating the Hamiltonian at the 
first order resonant term one has 

(where the angle 61 has been shifted in order to cancel 
cpc,o,~). Since h does not depend on 8z, h and pa are in- 
dependent prime integrals. Fixing pz = Pa, on the plane 
(pa, 0,) one has a circular motion with frequency 

h = e/a + c hk,,ka,O Pf'& +~o,o,lP;'aCOS(Pw 

2kl+=r<q 

(9) 

ia = g(Pit Path), 

and therefore the Hamiltonian reduces to the 1D case 

h = h,o Pi + La,0 P: + O(d) + ho,o,l Pi q/2 cos(q81), (11) 

where hr,o, hz,o depend on the map coefficients and on 7ja 
(constant terms in the Hamiltonian can be omitted). 

Eq. (11) is a pendulum Hamiltonian whose fixed points 
can be analytically computed: setting the radient of h 

f to zero, one finds 2 families (pt, I$‘), (p;, 6,-) of q fixed 
points (k = 1 , ..,, q) which satisfy’ 

A _ -e + h,i,o Pa + Wala 
Z[ha,o,o + Wall 

+ o(e)a 

p: E pt + O(epl (12) 
,gk+ q 2?rk 

1 
P 

and the stability analysis shows that q of them are ellip 
tic, and q hyperbolic. In the 4D phase space one has a 
direct product of q fixed points in the plane (pr, 0,) times 
an invariant closed curve in the (pa,&) plane: this orbit 
has dimension one, is made up of Q connected pieces, and 
we will call it elliptic flxed line or hyperbolic fixed line ac- 
cording to the stability of the fixed point in the reduced 
Hamiltonian. In the neighbourhood of the elliptic ilxed 
line one has orbits which are a direct product of q 1D tori 
(what in the 2D case are usually called islands) times a 1D 
torus. These orbits have dimension two, and are made up 
of q pieces simply connected. 

Going back to the original plane, the orbits are deformed 
by the transformation + (see Eq. 4), and therefore all the 
symmetries are lost: nevertheless, the topological proper- 
ties of the orbit are preserved. 

In order to display the 4D orbits we used 3D projec- 
tions. In Fig. 1 (upper part) we display the projection on 

‘For the sake of simplicity, we assume that hl,l,o & = O(c). 
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the space (2, pz, y) of an elliptic fixed line of period 5 for 
the H&on map close to the single uncoupled resonance 
wt/(Za) = 0.2050 and wr/(27r) = 0.6180. The geometry 
of the orbit is in agreement with the perturbative analy- 
sis. The stable neighbourhood of the elliptic fixed line is 
shown in Fig. 1, lower part: one observes a 2D orbit which 
is made up of 5 unconnected 2D tori. 
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Fig. 1: 3D projections of the 5 elliptic fixed lines relative 
to a single uncoupled resonance (upper part) and their 
stable neighbourhood (lower part) 

4.3 Single coupled resonance 

The linear frequencies are wr = al + cr and ws = as + 61, 
where par - par E 2x2. The interpolating Hamiltonian 
reads 

h = e1p1 + c2pa + c &k.,l (pl)k’+‘q’l(pl)k’+‘P’z x 

x cos[l(P@l - $2) + ‘f’k,,k.,I]. (13) 

Since h depends on only one combination of angles qfil - 
~09, one can perform a canonical transformation 

$1 = 81 - %, *a = 02 
Q 

Tl = Pl “a = ;&‘I + /?a (14) 

which reduces h to the single uncoupled resonance form 
(8). Therefore, ~1 is a first integral and the reduced Hamil- 
tonian exhibits q elliptic and q hyperbolic fixed points. 
Indeed, there is a radical difference in the geometry of 
the orbit with respect to the previous case: the q elliptic 
(or hyperbolic) fixed lines which arise from the analysis of 
the Hamiltonian in the variables (~1, tr, $I,&) are trans- 
formed in the original plane (m,h, Br,&) into one ellip 
tic (or hyperbolic) tixed line, which is simply connected. 
Around the elliptic line one can find 2D invariant tori, sim- 
ilarly to the uncoupled case. In the original coordinates 
(z,ps, y,py) the symmetries are broken but the geometry 
is preserved: the numerical analysis on the projection of 
the map iterates confirms the existence of such resonant 
structures in the phase space [4] . 

6 CONCLUDING REMARKS 

We have shown that resonant normal forms allow one to 
classify and analyse the structure of the resonant orbits in 
a 4D phase space: different situations has been analysed 
and numerically verified using projections of the iterates 
of the mapping. Only generic cases have been considered 
for the sake of brevity: a complete analysis of all cases, 
including both low order resonances and degeneracy cases 
in which the first order resonant term is null, can be done 
following the same strategy. 
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