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Abstract 

Symplectic tracking with point magnets in the presence 
of a longitudinal field is achieved by replacing the drift 
spaces by a longitudinal drift, which is the motion of a 
particle in a uniform longitudinal field. Results are given 
for the transfer functions. 

field. The point magnets at the ends of the piece, kick the 
values of p, and PY at each end of the piece. In between 
the point magnets, the particle performs a solenoidal 
drift; the particle coordinates change as they would in a 
uniform longitudinal magnetic field. 

1 INTRODUCTION 

In the absence of a longitudinal magnetic field, symplectic 
tracking can be achieved by replacing the magnets [l] by a 
series of point magnets and drift spaces. To treat the case 
when a longitudinal magnetic field is also present, this 
procedure is modified in this paper by replacing the drift 
space by a solenoidal drift, which is defined as the motion 
of a particle in a uniform longitudinal magnetic field. A 
symplectic integrator can be obtained by subdividing each 
magnet into pieces and replacing each magnet piece by 
point magnets, with only transverse fields, and solenoidal 
drift spaces. The reference orbit used here is made up of 
arcs of circles and straight lines [2] which join smoothly 
with each other. For this choice of reference orbit, the 
required results are obtained to track particles, which 
are the transfer functions, and the transfer time for the 
different elements. It is shown that these results provide 
a symplectic integrator, and they are exact in the sense 
that as the number of magnet pieces is increased, the 
particle motion will converge to the particle motion of the 
exact equations of motion. 

It will be shown below that the above proposed 
approximate lattice for the case when E, # 0 gives a 
symplectic integrator. This integrator is correct to first 
order in h, using the simplest procedure for specifying the 
longitudinal field in the solenoidal drift. More compli- 
cated procedures for specifying the longitudinal field may 
improve the accuracy. However first order in h accuracy 
may be sufficient as the effects due to the longitudinal 
fields are often small. As one increases the number of 
magnet pieces, decreasing h, the result obtained by in- 
tegrating this approximate lattice will converge to the 
actual motion for the given lattice. 

3 THE EQUATIONS OF MOTION 
The equations of motion for the transverse coordinates 
may be written as [3] 

dx 1+ ZIP -=- 
ds PX 

PS 

dpr -= 
ds 

; + f (1+ z/p) B, - ; (I + 2/p) B, 1 
dy 1+ X/P --&- 
ds PS 

PY 

2 THE APPROXIMATE LATTICE 

In the absence of a longitudinal magnetic field, one proce- 
dure for symplectic integration is to replace each magnet 
in the given lattice by a series of point magnets and drift 
spaces. The equations of motion for the approximate 
lattice which has only point magnets and drifts can be 
integrated exactly, which gives a symplectic second order 
integrator [2] for the case where the longitudinal magnetic 
field, B,, is absent. 

dp,-e P, -- 
ds [ 

- (I+ X/P> B, - (I+ X/P) & 
c PS 1 

P, = (P2 - P2, - Pi> 1’2 

I, y are the transverse coordinates in a coordinate system 
based on a reference orbit with the radius of curvature 
p(s). As the longitudinal coordinates one can use t, the 
particle time of arrival at s, and E the particle energy. 
The longitudinal coordinates obey the equations 

dt l+z/PP 
:=-------- 

For the case where a longitudinal magnetic field is 
present, B, # 0, the following approximate lattice is 
proposed. Each magnet is broken into a number of 
pieces. A magnet piece of length h is replaced by point 
magnets, at each end of the piece with only transverse 
fields B,, B,, and a solenoidal drift which is defined as 
the particle motion in a uniform longitudinal magnetic 

In Eq. (3.1) it has been assumed t,hat the electric 
field has only the longitudinal component, .!I$. One can 
show that the equation for dtlds is equivalent to 

*Work performed under the auspices of the U.S. Depart- 
ment of Energy. de = i;l + x/p)’ + (dx/ds)’ + (dy/ds)‘] “’ ds 

(3Sc) 

(3.la) 

ds PJ V 

dE - = t-(1+x/P)& 
ds 

(3.lb) 
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where de is the path length over ds. 
The equations of motion from Eqs. (3.1) may be 

derived from the hamiltonian [3] 

H = - (I+ x/p) [EZ/cZ - m2c2 - (II, - eA,/c)2 

- (II, - eAy/c)‘] V2 - e (1 + z/p) As/c 

(3.2a) 
where II,, II,, , the coordinates canonical to 2, y are 

IL = pz + eA,/c 

fly = p, + eA,,/c 
(3.2b) 

The fields are related to the vector potential A,, A,, A, 

by 

B, = & ;AY - 6 ((I+ z/p) A,) 1 
B, = tAz - ;AY 

8Y 
1 

(3.3) 
B, = - 

1 +x/p 
a (Cl+ Z/P) 24,) - ;A] 
dx 

It then follows that transfer functions found by in- 
tegrating Eqs. (3.1) exactly are symplectic transfer 
functions. The phrase transfer functions is used here to 
indicate the set of functions that relate the final coordi- 
nates to the initial coordinates. 

4 SUMMARY 

This section summarizes the results found for the transfer 
functions when longitudinal fields are present. Further 
details and the derivations of the results are given in 
reference 4. The results given below might be used in 
writing a symplectic tracking program when longitudinal 
fields are present. In the following, qz = pz/p and 

qy = PylP, Qs = (1 - n: - n:)“*. 
For the approximate lattice which is used to generate 

the integrator, it is assumed that each magnet is broken 
up into a number of pieces. Each piece is represented 
in the approximate lattice by point magnets at the ends 
of the piece and a solenoidal drift between the point 
magnets. A solenoidal drift is the motion of a particle in 
a uniform longitudinal field. 

The results are given using a reference orbit made 
up of circular arcs and straight lines which join smoothly. 
Thus there are regions of the lattice where the reference 
orbit has a radius of curvalue l/p = 0, usually at the 
drifts and quadrupoles, and there are regions where l/p = 
constant, usually at the dipoles. The results can also be 
used if one chooses a reference orbit which always uses 
the local Cartesian CS, based on the chord that joins the 
end points of each magnet piece on the reference orbit. 

4.1 nansfer Functions for the Point Magnets 

In the approximate lattice, each magnet piece is repre- 
sented by point magnets at the ends of the pieces and a 
solenoidal drift between the ends. The magnet piece goes 
from s = s1 to s = s2 and has a length along the refer- 
ence orbit of h = s2 - ~1. For the point magnets, the 
transfer functions are 

22 = x1 , Y2 = Yl 

1 sin 812 hB -_ 
Qz2 = PEl + Bp e,2 2 y 

1 sin8/2hB 
PY2 = Qyl - Bp8/22 I 

(4.la) 

The fields A+, by may differ from the actual fields at 
the point magnet by terms of order h and are given by 

k = [;Ay (~1s ~1) - ; (Cl+ zlpl-4 (=Y))] & 

8, = ; (Cl+ Z/P) -4 (ZSY)) - $L (~1 yl)] --!- 
1+ X/P 

(4.lb) 
j, = B,, fi, = By at s = .sl but not at s = ~2. 

4.2 Tknsfer Functions for the Solenoidal Drift 

For the solenoidal drift between the point magnets, the 
transfer function for I is given by 

x2 = xp’ + hl 

(0) _ 22 -Xl + 
2psin0/2(1 +rl/p)(q,~cosO/2+ qJ1sin0/2) 

-qzl sin 19 + qsl co9 ~9 

hl = L12m 

-qzl sin0 + qal cosBgl 
sina - (r 1- cos(Y 

91 = m 
a 

+ Qyl 
a 

a = -BFL,JBp , BS = B, (xlslyl) cosO/2 

1 
LIZ = - [l + (x1 + x2) /2p] 2p sin e/2 

Gl 

qfl = qzl cosf3/2 + qsl sine/2 

qT1 = -qzl sin 9/2 + qsl cos e/2 

(4.2) 
(0) x2 IS the transfer function when B, = 0. hl vanishes 

when B, = 0, and LIZ is the path length between sl and 
s2. hl depends on 12 through L12 and 0, and Eq. (8.2) 
is an implicit equation for 12 which can be solved by 
iteration, assuming that hl can be considered small. This 
gives the iteration result 

x2 (0) = .(zo) , Li”z’ = L (0) 
12 22 ( > 

x(21) = xv) + hl (Lo) , L;:) = L12 (xr)) 

(*) = xp) + hl Li’,) 
( > 

, L(1;) = LIZ 
( > 
x(22) 

(4,3) 

22 

, L(,;) = Ll2 (x’2”‘) 
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Long term tracking is often done with an accuracy In this case no iteration is required as LIZ does not 
of 1 part in 1014 in the transfer functions. For large depend on x2. The transfer functions for the solenoidal 
accelerators, where the longitudinal effects are small, the drift 
1 part in 1014 accuracy may be achieved after a few 
iterations. I2 = 11 + ML12 + 91 

In doing the iteration indicated by Eq. (4.3), gi can 4z2 = !?tl + !?2 
be expanded in powers of cr, keeping only up to the power 
of cy as the order of the iteration. Thus 

Y2 = Yl + QylLl2 + 93 

91 = f&” 
n=l 

w 

Sin = -qy1’(,; 1)! 

Sin = m (-1)“‘2 (n : 1)! 

Having found z2 and LIZ 
can then find qr2, y2, qy2 using 

Qy? = 4yl + Q4 

qs2 = !?I1 

(4.6) 

n odd 

0 = --&~/BP , Bs = & (~1~1~1) 

Ll2 = (s2 - Sl) /cl81 
(4.4) 

The transfer functions for the point magnets when l/p = 0 

n even are given by Eqs. (4.1) if one puts sin (e/2) / (e/2) = 1. 
The problem of tracking symplectically when longi- 

tudinal fields are present was treated in Ref. 5 for the 
by solving Eq. (4.2) one case of hard edge fringe fields. 
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