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Abstract 

Symplectic tracking with point magnets is achieved using 
a reference orbit made up of circular arcs and straight 
lines. For this choice of the reference orbit, results are 
given for the transfer functions, transfer matrices and the 
transit times of the magnets. 

1 INTRODUCTION 

In order to study long term stability, it appears desirable 
that the particle tracking be symplectic. One way to 
achieve symplectic tracking [l] is to replace the magnets 
by a series of point magnets and drift spaces. This 
approach is modified here by using a reference orbit that 
is made up of arcs of circles and straight lines which join 
smoothly with each other. This makes the symplecticity 
more evident, and simplifies in some way the particle 
tracking, as the coordinate system based on this reference 
orbit is not changing discontinuously between elements. 
It also allows the use of transfer matrices to find the 
linear orbit parameters. For this choice of reference 
orbit, the required results are obtained to track particles, 
which are the transfer functions, the transfer matrices 
and the transfer time, for the different elements present 
in the accelerator. It is shown that, in the absence 
of longitudinal magnetic fields theses results provide a 
symplectic, second order integrator. Existing tracking 
programs that use a reference orbit, made up of arcs 
of circles and straight lines, can be modified, using the 
results given here to do symplectic tracking with point 
magnets . The results have been used to modify the 
ORBIT tracking program [2]. The ORBIT program will 
now, by changing an indicator, either track using the 
usual large accelerator approximation for the transfer 
functions or do symplectic tracking with point magnets, 
and will use the same reference orbit in both cases. 

2 EQUATIONS OF MOTION 

The equations of motion for the transverse coordinate 
when no longitudinal magnetic field is present may be 
written as [3] 
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z, y are the transverse coordinates in a coordinate system 
based on a reference orbit with radius of curvature p(s). 

As the longitudinal coordinates one can use t, the particle 
time of arrival at s, and E the particle energy. The 
longitudinal coordinates obey the equations. 

dt l+z/PP -=-- 
ds P, v 

dE 
- = e(l+x/p)&> 
ds 

(2.lb) 

In equation (2.1) it has been assumed that the 
magnetic field has no longitudinal component, B, = 0, 
and the electric field has only a longitudinal component, 
&. One can show that the equation for dt/ds is equivalent 
to, see Eq. (5.7), 

dt = !f!!! 

de = i(l + x,p)” + (dx/ds)’ + (dy/ds)z)l’z 

(2.lc) 

where dl is the path length of the particle over ds. 
The equations of motion, Eq. (2.1) may be derived 

from the hamiltonian 

H = - (1 + x/p) (p’ - p2 - p;) “’ 
- (e/c) (1 + X/P) -4 

(2.2a) 

where the fields are related to the vector potential A, by, 

By = (1 +Irlp)Z a W + X/P) -41 (2.2b) 

B, = --&AS 



It then follows that transfer functions across any 
element found by integrating Eq. (2.1) exactly are sym- 
plectic transfer functions. The phrase transfer functions 
is used here to indicate the set of functions that relates 
the final coordinates to the initial coordinates. 

3 THE APPROXIMATE LATTICE 
One procedure [I] for symplectic integration of Eq. (2.1) 
is to replace each magnet in the given lattice by a series of 
point magnets and drift spaces. The equations of motion 
(2.1) for the approximate lattice which has only point 
magnets and drift spaces can be integrated exactly when 
the reference orbit is made up of a series of smoothly 
joining arcs of circles and straight lines. The result 
obtained by integrating the approximate lattice of point 
magnets and drift spaces is correct to second order [4] 
in h where h is the distance between the point magnets, 
provided one chooses the strength of the point magnets as 
given below. Thus as one increases the number of point 
magnets, decreasing h, the result obtained by integrating 
the approximate lattice will converge to the solution of Eq. 
(2.1) for the given lattice. The particle motion found by 
integrating the approximate lattice is symplectic, as the 
transfer functions proposed below for the points magnets 
are to be derivable from a hamiltonian [4]. 

4 SUMMARY OF THE RESULTS 

This section summarizes the results found for the transfer 
functions when one uses a reference orbit that is made up 
of arcs of circles and straight lines which join smoothly 
with each other. Further details and the derivations of 
the results are given in Ref. 4. The results given below 
might be used in writing a symplectic tracking program. 

It is assumed that no longitudinal field is present, 
B, = 0. This is a good approximation for large accel- 
erators, where the field in each magnet may be replaced 
by the average integrated fields BZ (x, y), By (I, y) dis- 
tributed uniformly in s along the magnet. 

B, = --A- 
J 

$2 

s2 - Sl 3, 
ds& (x9 s, Y) 

By = 1 J $2 dsBy (2, s, Y) (4.1) 
sz-s1 3, 

B, = 0 

sr to sz is the entire length of the magnet along the 
reference orbit. It is assumed that each magnet is 
broken up into a number of pieces. A magnet piece of 
length h is replaced by point magnets at the ends, or 
one point magnet in the center, and with corresponding 
drift spaces. In the following, qZ = pi/p, q,, = py/p, 

qs = (1 - qz - q$‘? 
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4.1 l?ansfer Functions for Point Magnets 
e = (~2 - sl) /p, h = s2 - S1 

The phase transfer functions is used here to indicate the Eqs. (4.5) are for the case where the point magnets 
set of functions that relate the final coordinates to the are put at the ends of each magnet piece which goes 
initial coordinates. The transfer functions for a point from s1 to ~2. For x, y, s one uses the coordinates of the 
magnet located at s = si, for the case where the point particle just before the point magnet. If one puts one 

magnets are placed at the ends of the magnet piece, is 

x2 = Xl, YZ = Yl 

q.2=qrl+~~(1+xll~f~~y(xl,Y1) 

Qy2 = Pyl - j&i (1+ Xl/P) 7% (Xl, Yl) 
(4.2) 

S = h/2p 

h is the length of the magnet piece. For the case where 
the point magnet is placed in the center of the magnet, 
replace h/2 by h in Eq. (4.2). 

4.2 Transfer Functions for Drift Spaces 

For the region where l/p = 0, 

Qr2 = Qxl, x2 = I1 + Qzlll2 

Qy2 = Qyl, Y2 = K + Pylk! 

112 = (s2 - Sl) lqs1 

4s = (1 - 9: - 9,“) 

112 is the path length between si and sz. 
For the region where l/p # 0, 

(4.3) 

qr2 = qzl cos 0 + qJ1 sin 0 

qs3 = -qrl sine+ qJ1 cos0 

0 = (s2 - Sl) lP 

(4.4) 

x2 = x1 + (l+ zi/p)2psin8/2 
qzl cos O/2 + q31 sin 9/2 

-qll sin0 + qsi case 
112 = (1 + XI/P) psin e/q52 

qy2 = Qyl, y2 = Yl + Qylh2 

4.3 Tkmsfer Matrices for the Point Magnets 

r 1 0 0 01 

G= 1:: i it HJ (4.5) 
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point magnet at the center of the 
Eq. (4.5) one replaces h/2 by h. 

4.4 Transfer lllatrices for the Drift 

magnet piece, then in T34 = !I, (1 + ~~l/r$l) , l/p = 0 

Spaces 

Tij=[;; g ; g] (4.6) 

For l/p = 0, Tl1 = T22 = 1, T31 = T24 = 0 

Tll = 1+ Z2lP 431 -=- 
1+23/p Ps2 

Tll = 1,1/p = 0 

qs (e/2) 
TIZ = (I+ XI/P) 2psine/2p 

( 
1+ qr (e/2) qz2 

qz (e/2) = qzl cos O/2 + q:l s:n */2 
Q. (Q/2) 4r2 > 

qJ (o/2) = -qzl sin e/2 + qsl cos e/2 

T12= v (I, (5)2), l/p=0 

h w2hyl e qyl 
Qs29sl - s’n zpsl 

4.5 Large Accelerator Approximation 

The transfer matrices are not used in tracking particles 
for long times. They are primarily used to find the tune 
and other linear orbit parameter. Approximations in 
computing the Tij will produce small errors in the linear 
orbit parameters which may be acceptable. 

One interesting limit is the large accelerator approx- 
imation which is usually valid for large accelerators. This 
assumes that 

x/p << 1 (4.7) 

qz2 < 1, quZ << 1 

eq, K i eq, a I 

6 is the bending angle of each magnet piece. 
In this limit one finds that for drift spaces 

T22 = qszfqsl 

Tz2 = 1,1/p = 0 

T24 = - (qyl/q8d sin 0 

T24 = 0, l/p = 0 

T31 = (nydqld sine 
T31 =O, l/p=0 

T32 = Qvle12 
( 

Q”cose + sin 0 
Ps2 51 > 

Ts2 = e12y, i/p = o 

~~~ = (I+ xl/p) 2psine/2, 0 = (~2 - 5-1) /P (4.8) 
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