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Abstract the form 

p'" (1 - @/y)Re(i?ei+) f (wh/y):~Il]t 
(i/y)Re[($)e'YJ] (2) 
T' =: g/y; li, = ;g/,'ir - 1; 

whpre jj = </Ho, wlL = eHo/mci;. I? = d/rmw, 
$J = i? - t, r;’ is a unit, vector in the direction of 
wave propagation, ? = ( I t J?? + I-):) II2 is the particle 
energy, and p’is its momentum. The set of Eqs.(2) 
has t.he integral of motion 

The results of an investigation of the dyna.mics of 
charged particles motion in a constant external mag- 
n&c field and affected hy the regular electromag 
netic wave with arbitrary polarization arc presented. 
In this case the stochastic accelera.tion occurs as a 
result of tlicb nonlinear cyclot,ron resonances overlap- 
ping. Expressions for the diffusion corfflcient in GIL- 
ergy space have hcen revealed and it was demon- 
strated that it:: value essentially depends not. only 
on the adjarcnt ( for the p;lrticlcs vzit,h givcln energy 
y) cyclotrorl r(5onaIIcc5 hut on t,lll, fiLr !>IIC:, ;lS tvell. 
The conditions under which the width of nonlinear 
resonances grows faster th;ln thck distance het,5vc:~9~ 
them with an increase of energy have been detcr- 
mined. These conditions are similar to thvse for u11- 
limited charged particles stochastic acceleration. It 
was shown that in approaching t,o t,hti autorc5ona,nct’ 
conditions there is not stochast,ic inst,ability at all. 
Geometrical analysis of wave-particle resonance co:1- 
ditions and integra.l of motion in energy-momentum 
space was carried out. 

lj.- &(iffJd',) + W/2[T'. I?] - tC+, = COll.Sf (3) 

For snbsequt~nt annlysis, it is wnverlient to transform 
to new va.riahles pL ~ pz. 8, <, 11 tlf:fin?d hj 

pT = pl cos 0, py = pi sin H. pz = p,, 
3: = ( - pi/w,, sin 0. y = 71 -+- ~‘1 /tib( r(os H. i-1) 

Suppose that the amplitude of field $1 = P~~;~;o/v~~L 
is sufficiently small and taken int.o account that t.he 
particle will interart efficic9tly rvith t,lie wave if it 
fulfills one of the resonance conditions: 

1 General Equations and Results k,p, + sswh - 7 = 0. s = . . . . -2,-1,0.1,2,... (,i) 

m?e consider the motion of a charged particle in a con- after averaging over the fast time scale one ca.n find 
stant, externally applied magnetic field Ho = (0, 0, Ho} following equations for particle energy y and resonant 
and in the field of an electromagnetic pla.ne wave: phase OS = Ic,.z + k,< - .sB - t in the case of an isola.ted 

resonance 
f-= Re{E&eexp (ii?- id)} 
71 = Re{ 5[6ii]Eo exp (,i&-- ;wt)j 

(11 ? = tT”/yM’, cos es. 
8, = k,pz/y + SW,,/? - 1 $ &E; sin 8,, 

(6) 

where 6 = {cy,,Ic~~, oz} is the polarization vect,or of 
the wa,ve, wave vector k’ has only two components k, where: bV, = Q-X”’ ------J&l - ~yPLJh4 t O,fbJJl-1)’ 

andk, (L= {&>O:kz}). I n elm of the dimensionless P t 
Cd/c,@ + $Jmc, f i tTcfu 

k;,vL CI s t 
variables (t + wt, r’ - 
the equat,ions of particle motion can he reduced to 

F, = s(1 - kici)(y& - o&7;) t Y+T7 

Sk, -- (----- (yypL Js - cy,2),$) + 
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the 7 = yo + Ts, yS << yo and taken into account 
approximate integral of motion pz - Ic,y = a = coot 
one can find the equation of ma.thematical pendulum, 
define the width of nonlinear resonance aTS a.nd the 
distanccl between them 6Ts: 

AT, = 4dm, 

67s = &h/k:, 

and write generalized Chirikov’s criteria [I]: 

(7) 

(8) 

Tinder such condition, particles motion becomes com- 
plicated, and in fact chaotic. 

In the space (y,p, pz) particle moves on paraboloid 
of revolution 7 2 = 1 + p: + pi . The effective in- 
teraction of the particle with the wave is defined by 
resonance condition which represent cross section of 
paraboloid by plane 7 = kzl~i $ .su~. ‘Clie have obtaine 
ellipses in projection on (7.7,~): 

(7 - SWJk;)” 
pw; - kg)kZ/k$] 

(Pz - S%k$b)2 
Ks2~; - Q)lkY 

Let us consider interaction of charged particle with 
a plane circularly polarized electromagnetic wave prop- 
agating under angle 9 to external magnetic field. In 
this case IV3 can be written as: 

(13) 

where p, and pl are connected by the relation (10). 
At ‘p = 0 integral coincidence with resonant condition 
(s = -1,l). Th is means autoresonance interaction. 
In this case stochastic instability does not arise. In- 
deed, from resonance condition and integral of motion 
one may find following expression for pz and pl: 

Qh 
PJ. = - sin 9 1/’ 1 - (u2 + sin” +9)/w: 

pz = (uJ~, cos p $ a)/ sin2 +5 

and evaluated the width of nonlinear resonance (7) 

(9) 
at small cp: 

(14) 

We find from (S), (14) that at p --+ 0 

+ I( 
p: 

s2w; - ,@)/k$] = I; (10) 
4%/6Yl - 0 i.e. according to Chirikov’s criteria 
stochastic instability does not became. 

Let us seek out that angle p, at which with growth 
which at Ic, = 0 “degenerate” into parabolas: 

y = (1 t s”w~)/(2wz) t p~@sw); (y,p1) 
Pz = (1 - s24)/(hL) t u~/(2wL); (P*,Pl) 

and at k, = 0 into segment and circle. It is easy 
to obtain the threshold for value S = kz/Wh > 1, at 
which resonance is possible under fixed wave param- 
eters and tih < 1 . Integral of motion represented by 
hyperbolas in projection on (:l,pI j: 

energy of the particle the width of the nonlinear reso- 
nances is greater then distance between adjacent res- 
onances. This leads to the diffusion of the particle 
in energy space, and so the unlimited acceleration of 
particle may be realized. Assuming that the number 
of resonance s > > 1 from (5) and integral for p, and 
pi (12) we find: 

p, = (swh cos y + u)/ sin2 y 

(*/ - k,a/k;)2 p”i 
[(k: + u2)/k$] - [l t u2/kf] = ” (11) 

(~2 - dk:)’ P2, 
((k;(l -j- d/k$)/kzJ - [l + u”/kl] = ” (12) 

which at k, = 0 “degenerate” into parabolas, and 
at k, = 0 into parabola and straight line. It is easy 
to see that the integral of motion does not became 
finite curve. Consequently, it does not restrict gain 
of energy by particle. 

pl = swh 1 - (a2 f sin2 p)/(s2wz)/ sin +5 

Using this relations one can estimate width of non- 
linear resonance 

and using Chirikov’s criteria and (7) one can obtain 
condition for the sought angle 9 : 

16&cls ‘I3 Sin p/Wh > 1 (15) 

As stochastic instability develops, particle trajec- 
tories become exceedingly complicated, and are only 
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amenable to study by numerical methods. Some- 
times, however, this very complexity makes it possible 
to simplify the problem considerable by utilizing the 
methods of statistical physics. Let us consider the 
evolution of the distribution function for an ensemble 
of oscillators in a, constant magnetic field Hu and in 
the field of an arbitrarily polarized external electro- 
magnetic wave. Mutual interaction of particles and 
wave excitation by particles will be neglected . Un- 
der these conditions, the problem of the motion of 
the ensernhlr reduces t,o a one-particle problem. l’hc 
criterion for the onset of stochastic insta.bility is given 
for each particle by(X): we shall assume that thf? elec- 
tric field strength of the external electric field satisfies 
this condition. In order to st,udy the diffusion in en- 
ergy of the particles belonging to the ensemble, we 
use Eqs.(6) rewritten as 

w7, cos 0, 
i=EoE ? 

bp2 
,& = ~ 

Y 
A y - 1 (16) 

Since stochastic instability will have set in, we may 
assume that the phase of the resonances are random 
and independent. Bearing in mind tl1a.t the terms on 
the right-hand side of the first, of Eqs.(l(i) are of small 
amplit,ude, we may substitute the unperturbed values 
of the variables. Then the first equation in (16) yields 
the following expression for the correlation function: 

h’ =< jqt + r)?(t) >= ;(E:,/y? 
xRe{ezp[i~(k,I~& - I j] C ~I’,~e~pjisiiir~~/~!}, (17) 

where 

Using the addition theorem for cylindrical functions [2], 
we can expand the sum on the right-hand side of (17) 
to yield 

. (19) 

tcr$$7o(lq t ;pjrr+a-h-r (iwhT/y)J22(n) 

+plp,,azJ~(II)"'~2(w+ + cd""""")]} 

where 

“f = cl, f ayr K G (1 _ ,+W/+d/(, + &W/+), 

II E 2k,pl sin(whr/2y)/ijh. 

Making use (19), we can easily find the varianre 
u2 E<< (.AY)~ >>. Indeed Eq.(lG) gives 

t 

< a-, >= 
.i 

-y&l& (20 1 

0 

so for the variance WC have 

g2 = 2 i dT( t -- T)Kj~). (21) 
0 

At small times 

t << to -cc nlin 

[ 
-$ (kz& - 1)-‘.2”1’:/“*p~] 

the qua.ntity K(T) can he treated as a constant, yicld- 
ing a quadratic dependence for t11c variance: 

2 = K(0)f2. (22) 

At, large times, the main contribution to the integral 
(21) comes from values of r less then to. We t,hen 
obtain 

2 = K(O)f& (23) 

Note that the value of K(r) and (T’ essentially de- 
pends not only on the neighbourhood cyctlotron res- 
onances but on the far ones as well. 

According to the numerical results (see. for exam- 
ple [3], the mechanizm considered here for particle 
interactions with a field can be an efficient means 
of heating and accelerating charged particles --- the 
mean particle energy, in time of order 100 cyclotron 
periods, increased from < y >= 2 to < 7 >= 5. 
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