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The stability of short laser pulses propagating t,hrough 
pla55mi~ cl~mncls is investigated t,heori,t,ically. Pcrt,urba- 
tSions to t.hc lasc,r pulse arc s1~ow11 to perturb the pondero- 
motive, 11r~5surf‘. which Inotlifics l,hcb dic~lectric propert,ies of 
t,hc plasma channel. The channel perturbation t,htln fnr- 
thcar dist,c)rt,s i,he Iascr l~ulsc~. Mechanisms for suppressing 
the instabi1it.y are discus& 

1 INTRODUCTION 

The stable propagation of laser pulses in underd?nse plas- 
IELS is fundamental to the development of laser wake-field 
accelerators. The laser pulses must, be focused to a small 
spot si7r in order to generat,? a large amplit.ud<‘ l)lasma 
wave, and, thereby, a high accelerating gradirnt [l]. The 
laser will, in free space’, br focuscsd only over a diffrac- 
tion length Z,. = WCT’/~C, where w is the laser frequency. 
r the spend of light, and c; the lasrr waist, at thp focus. 
A homogeneous plasma. which has a dic:lrc.trir constant 
c = 1 - w&/L& where tip,) = 3~r’~c/r)> is tht, <,lt,ct,ron 
plasma froqurancy, -C thcl c,lcctron charge, m the electron 
rest, ~nass, and no the plasma ticnsity, will only enhance 
the 1,(~11(1~~11cy of the light to diffract. To achit-ve a net 
accpli,rarinn of, say, 10 GPV, will rclquir?, v;ith present ter- 
awatt lrtsers, propagation lengths of or~li~r 1 O-20 Itnylcigh 
ranges. and TeV accelerators using a single, laser would rc- 
quirc-, h~~t~dreds of Rayleigh lengths. For overall &ciertc> 
reasons, t,he propagation lengths must, he long <,nough for 
a sutml ailt,ial fract,ion of t.lii laser energy to br convc~rIcd 
into plasma oscillation This will require propagation over 
many diffraction lengths. 

Several schemes have been proposed to overcome diffrac- 
tion. liclat,ivistic guiding [Z] relies on thr energy d+ 
pendencr of t,he plasma frequency, ~5 = w&/r, where 

-, = ,,/l + F. $/m2c2. The elrctron moment,um 1 p’I will bc 
largest, where thf laser pulse is most. intense, and therefore 
t,he plasn~a frt=qucncy will br= lower thcrc, and thr pulsc~ will 
generate a nonlinear indrx of rc,frnction which is larger at 
t,he ccntc,r of the pulse t,han at, t hc pulse edges Analysis 
has shown t#hat 1 in steady-stSatc,, rclxt,ivistic guiding can 
focus thr pulse whenever thp total power is great,cr than 
P, = 16.2(Li/L+,)2 GW. 

For pulsrq of order a plasma wavelength, however, rpla- 
t,ivist,ic guiding is substantially reduced [3]. 4n ahernat e 
schcxrnc: envisions guiding the laser pulsr in a plasma den- 
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sity channel. The channel has a higher density on the 
outside than on t,he inside, resulting in an index of refrac- 
tion of the plasma which decreases from the channel axis 
(due t,o the increase in plasma density). A fixed plasma 
channel is analogous to an optical fiber, and its guiding 
properties can be similarly analyzed. The plasma channel 
can be used to guide short pulses, and has been studied us- 
ing axisymmetric models for parabolic densit,y variat,ion [S] 
and for hollow channels [4]. 

This paper considers the dynamic stabilit,y of channel 
guided pulses in the presence of plasma wakes. A pertur- 
bation to the guided equilibrium leads, through the pon- 
dcromotive force, to a plasma density perturbation which, 
in turn, couples back to the perturbed field. Thus, the 
plasma couples different longitudinal slices of the laser 
pulse. For example, a transverse instability of channel 
guided pulses occurs whrn the laser pulse is initially not 
centered on the channel axis. The underlying physics is 
straightforward: t.he off-cent.eretl laser produces a pondero- 
motive force with a dipole component; this causes the sur- 
rounding plasma electrons to try to follow the laser pulse. 
Thus the shape of the channel is distorted and its guiding 
properties are perturbed. There will be a coupling between 
higher order mult ipolc,s, so that the back of t hc, laser pulse 
will widen. 

2 THEORETICAL MODEL 

\f’ith a qua.drat,ic d<Ansit,y variation, the problem c.an bc 
solvtyd c>xact.ly. The physical model consist,s of a prrformcv~ 
neutxal plasma channel with an unperturbed densit,y given 
by 

71”(?1) = no(1+ $1, 

wherr rz = x2 + y2. Since the duration of the laser 
pulse is assumctd to be short compared to 27r/~+, where 
“)& = 47r&i,/rrr;, t,t K Ions can be considered immobile. I 
I’hrtherrnorc~, the laser frequency is much larger t,han the 
plasma frequency, so that the evolution of the laser pulse, 
caused by t,he rlectron density wake, occurs on a time-scale 
much longer than the laser period. Thus, we consider an 
averaged (over a laser period), slow time-scale, weakly rel- 
ativistic equation of motion for plasma electrons under t,he 
influence of the ponderomotive force of the laser field. 

A fluid model, which is applicable before wave-breaking 
has occurred, is adequate to describe the plasma evolut,ion 
for t,he short pulse duration of interest here. In particu- 
lar, a plasma electron must have a thermal vclocit,y in thP 
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plasma must, bc much less than its oscillatory velocity in 
the laser. 

The channrl densily is taken to v;try over a distance 
much larger than collisionless plasma skin-depth, so that 
K = c/W,lv << 1. Then, as shown below, the unperturbed 
laser pulse has a spot,sizc 2w = 2dm << W, so that 
the density doc,s not vary appreciably in the region where 
the ponderomotivc: force is nonzcro. 

We consider a circularly polarised radiation field A’ = 
mc??i/e, where 

a’= ~(a(s~.i,t))(i:, i- ig,)exp(i(h3z -ijot)) + CC. (2) 

Introducing the variables s = t - z/u~“, z = Z, and 
using the eikonal approximation, the weakly relativistic 
limit (1 a’I”< l), and u,” < Y* results in 

( 
2 

W’l --i:+n:-~(r-1%!2,+2ik~)0=0, $ 
I I 

(3) 
where vg,,/c = k3c/tio. The amplit,ude is expanded as t,he 
sum of the unperturbed guided laser pulse and a pertur- 
bation driven by the generation of plasma density modu- 
lations: u(.i?l,~,t) = ao(dl,s) + al(fl,s,r). We use the 
dimensionless transvcrsc coordinates 2 = x/,~,;i, = y/w, 
and ‘? = XIV. Retaining leading order t.rrms in Eq. 3 then 
results in 

(-0; + r2)a”(s, i,) = d ($L~:-f+(<Gi,. 

(4) 
Since t,he primary concern in this paper is guiding by a 
channel and not relativistic self-focusing, we will assume 
that the laser power is below the self-focusing t.hreshold PC. 
This allowed us to neglect the nonlinear terms in Eq.(4). 

The calculation proceeds by linearizing Eq.(3) and ex- 
panding the perturbation nl in a complet,e sct~ of transverse 
eigenfunctions ti: which can be expressed, in cylindrical 
coordinates (r, 8), as 

cql(s, sp + m)! = 
nl ! 

ds’sin (S - S’)(b(S’, i) (11) 

$~(r,Q) =e~p(-~“/2)~“L~(~~)exp!im8), (5) 

where Lr arc the modified Laguerrc polynomials [5]. 
The unperturbed equilibrium profile nc can be taken as 

ao(s, i, .Gl) = &J(S) exp (-?/2), (6) 

and its complex conjugate. Here A: = 2 + 2m + 4n. The 
coupling coeflkients can br calculated explicity using re- 
lations between Laguerre polynomials [5]: 

C,rlZ = - 2L+:;!n2! (; + F), (12) 

which corresponds to the lowest (rn = O,n = 0) eigenfunc- 
tion. 

where L = nl + nz + m. Eq.(ll) can be used to find t,hc 
evolution of the instability for a finite duration pulse. If 60 
has an arbitrary longitudinal profile, these equations need 
to be solved numerically. 

The rquat ion for t,hr pcrturbrd fitxld is 3 MATRIX DISPERSION RELATION 

d 2 
WFO [(2 + Cl - i’“) + 2ihJ-]al = -72 

83 C2 i > 
2-b a(l. (7) 

where b = (cz;nl - aoaf)/ 
The equation for the density modulation Sn is given 

by PI: 

(g +w;,) g = c2C2b. (8) 

Equation (8) for Sri/no can be broken into a longitudinal 
and a transverse piece by use of the qua&static approxi- 
mation c2Vi M P/d.?. 

Challging Eq. (8) into an iutegrid equation, integrating 
twice by parts, and inserting t#he resulting expression for 
(6n/n.o) into Eq.(7), yields 

( 
a 2 + 0: - r’ + ZikW”~ 

1 
al(s) = 

1 

s 

Q(S) 
-co 

w,ods’sinwyO(s - s’) (9: - +) b(s’,x). (9) 

IIere both ~10 and nl are implicitly assumed t,o depend on 
$1. 

The fundamental has m = 0, so that perturbed modes 
with differing azimuthal numbers are decoupled. Thus, we 
can concentrate on the evolution of a particular azimuthal 
mode with an arbitrary radial profile. This profile can be 
decomposed as a weighted sum of radial eigenmodes with 
the same azimuthal mode number: 

U;l)(Zi,Z,S) = fyn:;‘(z,s)g>~(j:;Q). (10) 
n=O 

It is convenient to introduce dimensionless time and 
space coordinates, normalizing them to a plasma period 
and Rayleigh length, respectively: B = wP(!s, Z = z/lcw2 
and to set br = ZoGr* + ti:GF. Then multiplying Eq.(S) 
and its complex conjugate by tin”, (T, 0), integrating over 
the transverse dimensions and making use of the orthogo- 
nality condition for Laguerre polynomials [5] results in 

Further analytical progress may be achieved by assuming 
that either (i) Zo varies slowly on a time-scale of a plasma 
oscillation, or (ii) that & has a flat-top profile. We spec- 
ulate that for pulses where relativistic guiding effects play 
some role, that this approximation will give an over esti- 
mate of the growth for a short pulse. (See the discussion 
of BNS-like damping below). Equation (11) can then be 
solved by Fourier transform in s. 
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The result is a set of coupled differential equat,iorts 

($ + cl’) b;;“, = .e2’-‘t$ iii’?) ~“&,“:::a (131 

where fT1 = VI + Znl, w is normalizrd to ~~0, and Ax’1,,9 = 
(L!/(((rn+nl)!fl2!)2 ‘“1+“2))(l/1i+(L+ 1)/2). Eq.(l,?) de- 
scrihrs t.he ixvolution of any initial perturbation of a flat.- 
top laser pulses. As it, is obvious fratn F,q.(13). all t#lte radial 
modes are coupled to each ot.her This is a consequence of 
bot,h the nonlinear nature of t.ltc, laser-pl;tsma interaction 
and t,hr: finite t,ransvrrse size of Ohr ttnl)rrturbed cquilil;- 
rium. 

4 LASER-HOSE INSTABILITY 

It is instructive to examine the evolution of a laser pulse 
which is initially displaced from t,ttp cpnt,Cr of t,hr channel 
a~ a “rigid body”, which corresponds to the (m, 11) = (1,O) 
mode. The coupling of this mode to other modes decreases 
rapidly with the radial mode number n, so that, we can 
approximate t,he cvolut,ton of t,he instability by keeping 
only the diagonal element A&,. A more accurate treat- 
rnmt would involve kcepin, * a finite nlmtbt~r of modes and 
dingonalizing t,he resltlt,ing mat.rix. 

‘I’tt!~ dispersion rrlat,ion for the dip& mncle, obt~airtc~ti I)y 
keeping only the diagonal element,, is: 

( 14) 

where p =/ 3; / /8 (1 + k) xl 5; 1 /(81<). 
Asymptotic behavior of the solution for 5 2 1, S 2 1 

can be obtained from Eq(l4‘) by an inverse Laplace trans- 
form and a steepest descent? integration (SW, for example, 
[7]) in regimes that are delineat,ed by relations hetwc:c>rt 
the length of the p~lsc s, the interact,ion length z and t,htt 
coupling parameter ~1. For the analysis presrnteti abovc~ 
to be valid, ,U << 1. With TV = kow2 and returning to di- 
mc,nsional variables, t.he a.sytrtpt,ot,ic amplitude in the short 
pulse regime is: 

ii1 N Eloexp I 3fi 
4 1 &(SK) p3 (z/z&Jpos)~ 1 (15) 

Expressions valid in other regimes and details of the c,al- 
culation will he published elsewhere [8]. 

Some of t.hr conclusions drawn in this paper rely on the 
quadrat,ic radial variation of the plasma dcnsit,y. Another 
simple model [4], which also has better accelerating prop 
erties, is an inverted step-function radial density depcn- 
dence, which, due to finite variation in the plasma density, 
will have only a finite number of discret.e eigenmodes. By 
a careful choice of parameters. the unstable modes can 
perhaps be pushed into the continuum, which may reduce 
the instability. Furthermore, since each mode has a dis- 
tinct phase velocity the coupling between modes may also 
provide a natural mechanism for the instabilit,y t,o damp. 

The perturbation has. in the various regimes, an ex- 
ponential spatin-t,rmporal growth rate proportional to 
(z/zn)p(+OS)*, where 1) + q = 1. It, is not surprising 
that this behavior is similar to that seen in beam break- 
up instabilities encountered in linacs-here the laser pulse is 
somewhat analogous to an electron beam and the plasma 
channel to the metallic st,ructure in which the electron 
beam propagates. While tZhe analogy proves useful in u11- 
dcrst anding the, physical picture, and in developing sup- 
pression techniques similar to RNS damping, the det,ails of 
the interaction in the: two cases are different. The simila.r- 
ity bet.wc:cxn i.h(b last-r-hoscl and ~~lrctron-hose [i] instabilit,j 
can also be seen by choosing the perturbed field nl to be of 
a dipole t,ype and interpret.ing the expression (n;at +a&) 
as the transverse displacement of the beam. By analogy 
with BNS damping, a longitudinal variation in the “be- 
tatron frequency,” given here by l/Z,, should reduce t,he 
growth rat,e. WC have analyzed [8! two mechanisms for 
achieving this. either by introducing a frequency chirp on 
the pulse or using the natural variation that occurs from 
the nonlinear relativistic guiding. Future investigations 
need to address the critical issue of how these plasma in- 
stabilities, even if substantially suppressed, will affect, the 
final energy and cmit,t,ance of an accelerated bunch. 
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