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Abstract 

A technique for beam based alignment of sextupole systems is 
developedexploitingtheenhancementeffectoforbitdifferencesby 
the sextupoles. This technique can in principle be applied to 
sextupole or sextnpole strings with controlled orbit pattern and 
BPM configuration. This paper will discuss the theoretical basis, 
special optimization considerations and expected accuracy. Appli- 
cation to the SLC final focus is also discussed. 

1. INTRODUCTION 

In beam transport systems such as the SLC Final Focus System 
(FFS) where higher order optical aberrations critically affect the 
beam quality and hence the overall performance of the machine, the 
importance of alignment cannot be overstate4i. Originally for the 
purpose of cancelling the chromaticity at the interaction point (IP) 
a system of eight sextupoles was installed in two sections (the 
chromaticitycorrectionsection,orCCS)withphaseadvanceof 180 
degrees each. They are divided into two groups and powered in 
series by separate supplies (Figure 1). Changing the strengths of 
these sextupoles during machine tuning has been seen to lead to 
focusing and coupling changes at the Ip, an indication of misalign- 
ment. The misalignment by 500 micron of a single sextupole can 
cause as much as 2 mm of unwanted dispersion at the lP [ 11, let 
alone the confusion it introduces in the tuning process. Therefore 
accurate measurement of such misalignments is very important for 
ensuring a small beam size at the IP. This report discusses a 
technique motivated by this requirement 

2. MATHEMATICAL FORMULATION 

It would be of great convenience LO develop an expression of the 
beam orbit at any given point as a function of the initial orbit, the 
optics, and compounded effects due to offsets in the optical 
elements. For a lii optical system, this is relatively straightfor- 
ward [21. When sextupole offsets are involved, the linear formula 
must be extended to include higher order effects, which proliferate 
quickly with increasing number of sextnpoles. The formulation 
provided here can help keeping track of such effects to arbitmry 
order: 

Take the complete offset operator for a displacement vector a 
similar to that used in quantum mechanics: 
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To fii order a linear optical matrix transforms under this 
“offset” operation as: 

Off(;) R . Off( -:) ’ ? 
=R.(:+(I-R) .?i (2) 

which is just the linear offset effect [2]. 
To extend this formulation to the next order and retain a matrix 

representation we create a 14element “pseudo vector” P: 

p = t x,x’,y,y’, x2xx’,xy,xy’, x’2$y,x’y’, y2,yy’, f2 I 

P is not a real vector in the sense that all its elements are not 
independent. This 14-vector can be shown to txansform correctly 
underal4by14matrixTwhichisproperlyextendedfromthe4by 
4 hear optical matrix R up to second order, as is done in various 
optics codes. 

The following facts can be easily established: 
1) The second order effect of an offset in P by a vector a can be 
consistentlyobtainedbyapplyingtheoffsetoperator(1) directlyon 
P to second order: 

P,=Off& P (2) 
=P(::-,?+Z) 

2) The above offset effect, to second order, can be summed up with 
the following mafrix equation: 

Off(;).P=P+A(&P+B(:) 

where A is a 14 by 14 matrix and B a 14-vector. 
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Figurel. The CCS in the Final Focus. Hexagons are the 
sextupoles and LGPS the power supplies. 
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Thesefactscrulbeusedtoextend(2)tothesecondorderinan 
expression relating the initial orbit P and the final orbit P’ separated 
by a second order optical element T with an offset a: 

P’=Off(&T.Off(+P (3) 
=T.P zeroth term 
+[A(G),Tl.P+A(G).T.A(-i).P x-depend.term 
+T.B(-:)+ B(:)+A(:).T.B(-;;) constant 

To first order this reduces to the old result. One can now 
compound the effects of many such second order elements by 
simple minded matrix multiplication with the aid of a symbolic 
program such as MACSYMA, just like the linear case. 

From (3) we see that in addition to terms depending only on the 
offseta,asistrueinthelinearcase,theoffseteffectontheorbitalso 
contains terms linear in the initial orbit P, the latter being one order 
lower in a than the former (B is quadratic in a), and therefore 
dominant. Wecan thus takeadvantageof this fact toexperimentally 
measure the sextupole offsets by sweeping the incoming beam and 
looking at the outcoming orbit, as opposed to the offset of linear 
elements,wbichhastobemeasuredbyvaryingthemagnetstrengths 
[21. 

Apart from yielding a larger signal magnitude, varying only the 
incoming orbit has other advantages. It is relatively easy from an 
operationalpointofview. Andbecauseweareonlyinterestedinthe 
difference orbits, the data is immune to the following systematic 
errors: BPM offsets, any unknown kicks (e.g., quadmpole offsets) 
@er the measured sextupole, and mismatch between energy and 
bend strengths. Finally (3) suggests that if we vary only the 
incoming orbit, the difference orbits are linear in a and only a linear 
fit is needed to recover the second order effect of a. Thus the 
obvious strategy is to generate large orbit excursions inside th 
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Figure 2. Sextupole offset effects reflected in orbit deflection 
versus orbit scan range. A beam is scanned about some 
predetemined reference line through a sextupole with an 
offset. The thick wiggly line shows the BPM reading down- 
stream as a function of the incoming beam position or angle 
at a fixed point (or the strength of the corrector used for the 
scan). The same pattcm with an aligned sextupole is shown in 
thebox. Wbenanoffsetispresent,averysmaUlinearsignal 
andsomeadditionalwigglinessareaddedtothispattern 
which can be barely detectable. 

sextupole and look at the correlation between the incoming and 
outgoing orbits. 

3. PRACTICAL DIFFICULTIES 

Althoughamathematicalexpressionforcompoundedsextupole 
offsets can be derived using (3), in reality the formula is already 
very complicated with two sextupoles where 4th order terms in 
combinations of incoming orbit and offsets must be included. 
Fortunate1 y in the SLC Final Focus the power supply configuration 
allows individual sextupoles to be sufficiently isolated so that we 
don’t need to take into account the effects of adjacent sextupoles. 

We are however still faced with practical difficulties as indi- 
cated in Figure 2. Shown are the orbit signals after a sextupole 
versus theincomingorbit. Theactual signalreflecting tbesextupole 
offset is sandwiched between two other contributions (hatched 
area) which obscure the real signal and complicate the analysis. 

The upper hatched area consists of the following: 
1) known second order sextupole effect (a parabolic curve), 
2) any linear systematic error (e.g., quadrupole offsets before the 
=QwW, 
3) effects due to any pulse to pulse uncertain ty(~ewiggbpart,e.g.. 
upstreambeamjiner,correctorstrengtherrorfromoneseuingtothe 
next). 

The lower hatched area cubists of the following: 
4) linear optical contribution due to the sweeping of the beam, 
known but of overwhelming magnitude over the signal. 

Of the above, the second item indicates that we should eliminate 
all unknown systematics such as power supply errors as much as 
possible. We should also avoid having any intervening quadru- 
poles between the incoming orbit and the sextuple being mea- 
SUid. 

The third item forces us to abandon the linear tit mentioned at 
the end of section 2. Unlike the linear optics case [2], where 
unknown incoming orbits and corrector errors are simply absorbed 
into the tit as an unknown linear quantity, here the difference orbit 
would demand unknown quadratic terms in the incoming orbits, 
corrector errors, and offsets. Furthermore since the orbit differ- 
ences come in two forms not simply related to each other, 

AX=XA- XB and A(X?=Xi- Xi, 
it appears that a quite involved nonlinear fit would be needed, 
likewise accuracy and simplicity compromised. If we want to 
restore the linear nature of the difference orbits, the pulse to pulse 
incoming position and angle, as well as corrector exmrs, must be 
known in advance. 

Thefourthitembccomesaproblemasit growsmuchfasterthan 
the signal. In order to obtain some appreciable signal, this linear 
“background” usually reaches such a proportion that it totally 
obscures the signal and may cause orbit dependent errors due to 
nonlinearity in the BPM’s and the quadrupoles. 

4. A PROPOSED SOLUTION 

To attend to all the problems mentioned in section 3 except that 
of the pulse to pulse corrector uncertainty, an experimental scheme 
isproposedberetakingintoaccounttberealiiticSLCFFS. Anorbit 
bump is derived which generates very large excursion inside the 
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Figure 3. Optimized bump for sextupole offset measurement given realistic SLC CCS optics and hardware. The hatched block 
indicates the sextupole to be measured. The other blocks are focusing and defocusing quadrupolesand a powered-off sextupole. 
Vertical lines mark the locations of BPM’s and corrector dipoles as indicated. The dashed lines are the bump envelopes in the 
exact shape. The solid lines are the propagation of the sextupole offset signals in the exact shape, although not to scale with 
the dashed lines. 

sextupolebutclosesinbothposition andangleatsomedownstmam 
BPM’s. Figure3showsonesuchexampleinthey-plane. Thebump 
is optimized in the sense that mathematically of all such closed 
bumps allowed by the SLC CCS optics, this is the one which gives 
the maximum offset signal at the BPMs. The adjacent sextupoles 
are turned off to avoid higher order complication. There is no 
intervening quadrupole between the initial BPM’s and the mea- 
sured sextupole. The two successive BPM’s in the beginning 
ensure that both the position andGte ungie of every individual pulse 
are known and can be subtracted from the wiggly Part of the total 
signal, thereby avoiding the more involved nonlinear fitting prob 
lcm and source of error. The two quadrupoles are exploited to both 
help the bump closure, thereby enabling larger bump amplitudes, 
andmagnifythesignalofthesextupoleoffsetasitpropagatesdown 
to be picked up by the last two BPM’s. The linear”background” 
orbit is totally closed before these two BPM’s so it does not 
overwhelm the signal or cause problems of nonliiearity. The bump 
shape is generated by correlated scan pattern of the two y-correctors 
shown and three upstream y-cmectors. A study of the correlation 
ratios and the regular operation point in the 5-dimensional region 
spanned by the ranges of these five correctors gives us the maxi- 
mum attainable amplitude of such bumps. It is seen that with the 
existing correctors in the CCS, a significant signal at the last BPM, 
in some cases as big as the amount of the sextupole offset itself, can 
be generated against a flat “background”. 

In order to address the problem of pulse to pulse cormctor 
uncertainty, namely, arbitrary ermrs in the assumed corrector 
strengthsateachstepofthescan, wemustperformacalibrationtun 
first with the sextupoles turned off. ‘Ihe orbits so obtain&, which 
may display failure of bump closure, are then subtracted from the 
orbits in the production run with the sextupoles turned on. In so 
doing we again avoid getting involved in nonlinear problems and 
all we require is good reproducibility of the correctors. Theoreri- 

callywhenth&ontributionsfNrnthepulsetopulseincomingorbits 
and corrector errors are subtracted, the wiggliness in the total signal 
shouldbeeliminated. Thisfactcanthusbeusedtocheckthequality 
of the data against other random errors. 

Due to the independent sextupole offset effects in the x and the 
y planes, one single scan can yield information on offsets in both 
planes. However iftheoffsetisnotpredominantly in oneplane,the 
cross-talk between x and y may obscure the result if one tries to 
interpretthedataoutofasinglescan. Morescansinbothplanesmay 
beneededinsuchcases. 

A package has been developed to simulate the entire measure- 
ment and analysis procedure. The success of this method depends 
mainly on the accuracy of the BPM’s. It is seen that with a CCS 
sextupole offset of 500 microns and BPM resolution of 10 microns, 
we can achieve !X% accuracy in the best case. The outcome 
deteriorates quickly as BPM errors increase. 

5. CONCLUSION 

We discussed the general principle and diiculties involved in 
extmcting the sex&pole misalignment signal and presented such a 
technique for the SIC Final Focus. The principle and existing 
computer package can be applied to similar systems elsewhere. 
Simulation suggests that appreciable signal magnitudes can be 
expected. The main potential obstacle to the success of this method 
is the BPM error. 
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