
1167

Graphics Server and Action Language Interpreter greatly Simplify the Composition of
a Graphical User Interface.

R. Miiller
Elerliner Elektronenspeicherring-Gesellschaft fiir Synchrotrnnstrahlung m.b.H.

(BESSY), Lentzeallee 100, 1000 Berlin 33, FRG

Abstract

A GUI (graphical userinterface) has been developed with aUIMS
(user interface m;ulagement system) that has been build up us-
ing exclusively non-proprietary software. A graphics server
encapsulates completely representational aspects, mediates be-
tween user interactions and application v‘ariahles and takes care
of a consistent state of graphical and applicational objects. The
most flexible and powerful client of the graphics server has a
built-in inlerprotcr section. On user interactions the graphics
server passes code fragments in a C type language to this ap-
plication program where the requested operations arc executed.
Graphical representations, sem;lntics of user interactions ‘and in-
terpreter instructions are defined in a database written in a simple
and comprehensible UJDL (user interface dcfinjtion l;ulguag~).

I INTRODUCTION

The Berliner Elektronenspeicherring-Gesellschafl fiir Syn-
chrotronstrahlung m.b.H. (BESSY) operates an 800 MeV slor-
age ring dedicated to the generation of synchrotron light in the
VUV and soft X-my region [11.

Currently a new control system based on a distrihuteri com-
puting environment is gradually installed at l3ESSY [2, 31. It
replaces the aged control system [4] of the running light source
E3ESSY and h;b to serve as the kernel for the control system of
the planned ?@ generation light source RESSY II.

I.. ,

r Cal
entalion

tion
Ition

-

-- -. .

Figure 1: Products of an interactive Interface Builder

The new operator consoles are large high resolution, bitm‘ap
oriented color graphic screens with mouse and keyboard, the
GUI (graphical user interface) is based upon the X-window sys-
tem [Sl. Within this graphic system the view of an elementary

GUI object is typically a window that is most frequently com-
posed of a tree of subwindows. It has certain representational
elements, that can be further specified by resource descriptions,
and a definite user interaction semantic.

The complicated task of building GUI’s with the X-window
system is simplified hy a couple of toolkit libraries. Further
a reasonable number of commercial and public domain GUT
builders are available. They are mostly based upon we of the
toolkits and follow the corresponding style guide. The cornplcx
UIMS’s (user interfice rmnagcn~en t systems) isolate applicu-
lion code from the implementation of graphical representation
by an intermediate dialog Iaycr 171. These support cnviron-
men& facilitate coding work for the end user without requiring
extensive programming skill.

Interactive GUI builders usually start with tht: painting 01
windows. The semantics is then attached to the graphical entities
using the interface typical to the builder. These GUI builders
produce intermediate code (e.g. in C). After compilation the
results are application programs for the GUI objects or trees of
GUI objects (Fig. 1). Maintenance. developments and tuning
have to deal with the intermediate code.

Non-interactive UIMS are partly programmable in a special
purpose language (UIDL), that has to be compiled, partly intcr-
preted by a run time system.

Figure 2: The BESSY non-interactive UIMS

The architecture of the non-interactiveUIMS predominantly
used at BESSY is characterised by an interpreting run lime
system. Two application programs provide the modularity with
respect to representation and application functionality (Fig. 2).
They are completely build up from non-propriet‘ary software
and present in source code.

The representational aspects art’ encapsulated within a sepa-

1168

rate graphics server program we call mapper. They are realiscd
with the Inter-Views toolkit [6] but completely invisible to any
application program that addresses the graphics server via the
application sc,flware interface. Semantic aspects are interpreted
mti the 3pppriiltc :stions :ue performed by a flexihlo and pow-
erful application program we c,alJ action I;urguagc interpreter.
The different instances of GIJI objects are defined in plain asoii
description files we call fomrs.

2 GRAPHIC SERVER

Presently the presentational objects are derived from classes of
the InterViews toolkit (Fig. 3).

Figure 3: Elements of the Presentation Layer

Central object of the graphic server are the data structures of
application variables ‘and the interaction protocol of the event
driven dialog layer.

Figure 4: Dialog Layer: Graphic Server Side

On the request to put a GLJI object into action the mapper
parses the associated form and builds up the form instance [31.

These linked list data structures separate representational as-
pects from the semantic aspects of the variables (Fig. 4). A
library provides the application with the methods to build up
the corresponding dialog data structure. the applic,rrjon fi~rrn
ir~.s&r~ce (Fig. 5). The major part of the rcprescn tatiorial work
is then done by the communication between application and
mapper instances of the forms. These objects are logically con-
nected by a physical connection based on an XDR type protocol
on a TCP/IP socket link.

Application programs have no means to change the form
objects by themselves. Every desired effect is coded into a series
of requests sent to the mapper. If they are legal and executable,
the mapper synchronizes the change of the application vnriables
in both form instances by update reports as soon ‘as they <are
processed.

Events from user interactions (keyboard, mouse) arc handled
by InterViews Interauors (Fig. 3) ‘and passed to the application
v‘ariable referenced by the presentation variable list (Fig. 4).

3 ACTION LANGIJAGE INTERPRETER

This general purpose mapper client consists of the software
interface and an interpreter section. Due to the eventdriven
diafog layer it has no apparent sequence flow. The program is
best described by the data structures and functions of its C++
classes addressed by handle routines (Fig. 5).

I Scheduler I

Figure 5: Dialog Layer: Applications Side

Fmn Handler

This class is central and unique to the running program. Here
the glob‘ti variables, actions, window interaction stati (freeze,
unmap), ahum event instructions (timer) of all known GUI en-
lilies are referenced, time instances are reported and stored.

1169

Subforms are inlerpreted and h,andled, trees of forms generated
and managed.

Name Han tiler

Since mapper and application arf separate programs that might
run on different machines, pointers or addresses are unusable
references. In this base class objects are identified by their
names. Derived Iname h‘andler classes are the sets ‘suhform’
and ‘action’.

Action Mimager

In this set actions and their variables arc administered by an
action list. Actions arc started by user requests or timer events.
For all local variahlcs the specification of the context (PARENT,

HIGHLIGHT, DISABLE, CURRDIM, MAXDIM) is evaluated.

Expression Tree Handler

This is the implementation of the proper interpreter section.
Language elements are the declaration of variables by the defi-
nition of simple types (char, shorr, int, long, dauhle) and struc-
tures (mcqq, emeq: from the message dahlh;ae, s~sclssrar etc.
from the equipment raccess calls) or the definition of expressions
like go&>, if(.,.,, for(...;...;,..). Statements <and Synt,ax are very
similar to ‘C’.

All functions of the library of equipment ;1ccess calls, some
of 1ibc.a like srrcn;lp(i, srrncpy(), exp(). log() and some specific
internal functions cfiq&zfe, exrc~qomg.7) arc built in,

Special Varia hles
In the forms the usable interpreter functionality is addressed by
special variables (c.g. FI-ACTION. FIAUR)TLME). In this c&s
the corresponding semantic is implemented.

Two very specific variables are handled here: mey allow
for the change to another communication partner. namely the
mapper of another display the next GUI entity should contact
<and the field level network de,amon on another host that forwards
the ,?ssociated equipment access calls.

Timer Event Handler

The alarm event handler schedules the subsequent action on the
periodic action list. i.c. auroodon(~.

Dynamic Table 10

Servers for the m,aintenance of dynamic lists are started and
configured. Equipment names incoming on an UDP socket of
the dialog layer are added to the current equipment list, the
actual list c,an be :saved, existing configurations restored from
disc.

Process Contrd

Programs are started by fork(j and ~xec(~, the return code is
passed to the caller. This class keeps track of the associated
process JD’s and provides a method to terminate all child pro-
cess% to the parent form.

Debug Module
Debug flags specific to the interpreter modules previously dc-
scribed allow for a convenient tracing of command flow.

4 GRAPHICAL USER INTERFACE

Based on the two application programs described above, a corn--
plexGlJ1 has been composed with about 5300 lines of statements
in our UIDL, that provides all rcquiretl synoptic views and in-
teraction tools to the operators.

Control panels provide push buttons for the commands,
scrolled text fields for messages, chooser ;md edit fields for the
input of strings. Color fields display status information. Analog
values are shown a~ horizontal or vertical bars. A comparison
of set points and actual values can be done by arbitrarily config-
urable lists. As layout elements simple graphical elements arc
provided.

5 SUMMARY

A run time system of graphics server and action language inter-
preter connected with a GUI definition in a description database
has several advantages in comparison to the usage of most in-
teractive GUI builders:

- No understanding of the underlaying window system is
required. The GUI is easy to maintain ;~nd to extend.

- Graphical representations arc already implemented, tested
‘and stable.

-

-

-

The

Adressing of graphical entities is simplified. Only ;I selcc-
tion of needed and used graphical objects is implemented
and set up properly.

Flexible load managemcnl is possible. Mappers and the
form interpreters can run on any host in the network.

Maintenance requires only changes in ascii files ml w

recompile.

bandwidth of the mapper-application connection which
could be a matter of concern is perfectly satisfying.

Ill
121

131

141

ISI

161

171

6 REFERENCES

S. Uemstorff et. al., PhysicaScripta. 36, 15 (1987)

G. v. Egan-Krieger, R. Mtiller, f’roceedinp of the 2nd European
Particle Accelerator Conference, Nice, pp, 872-874, 875-877
(1990)

K. Mtiller et. al., Cclnference Record of the 19YI IEEE f’tiick
i\ccelerator Conference, San Francisco, pp. 131 l-1311 (1991)

G. v. Egan-Krieger, W.-D. Klotz and R. Maler. IEEE Transactions
on Nuclear Science, NS-30, 2273 (1983)

R. W. Scheifler, J. Gettys, The X window sysfem, ACM Transac-
tions on Graphics, 5, 79 (1986)

M. A. Lintnn, 1. M. VI&ides and P. R. Calder, Con~pring lis,~r
Interfares with InferViews, IEEE Computer, 8 (1989)

Robert Seacord, Ilsc,r 1nlrrjx.e Manag~n~enr S~S~PIILF trr~il Appli.
cafion Porfabilify, EUUG Newsletter, Vol. 10, Nr. 4 (1990)

