1167

Graphics Server and Action Language Interpreter greatly Simplify the Composition of
a Graphical User Interface.

R. Miiller
Berliner Elektronenspeicherring-Gesellschaft fiir Synchrotronstrahlung m.b.H.
(BESSY), Lentzeallee 100, 1000 Berlin 33, FRG

Abstract

A GUI (graphical user interface) has been developed witha UIMS
(user interface management system) that has been build up us-
ing exclusively non-proprietary software. A graphics server
encapsulates completely representational aspects, mediates be-
tween user interactions and application variables and takes care
of a consistent state of graphical and applicational objects. The
most flexible and powerful client of the graphics server has a
built-in interpreter section. On user interactions the graphics
server passes code fragments in a C type language 1o this ap-
plication program where the requested operations are executed.
Graphical representations, semantics of user interactions and in-
terpreter instructions are defined in a database written in a simple
and comprehensible UIDL (user interface definition language).

I INTRODUCTION

The Berliner Elektronenspeicherring-Gesellschaft fiir Syn-
chrotronstrahlung mb.H. (BESSY) operates an 800 MeV stor-
age ring dedicated to the generation of synchrotron light in the
VUV and soft X-ray region [1].

Currently a new control system based on a distributed com-
puting environment is gradually installed at BESSY [2, 3]. It
replaces the aged control system [4] of the running light source
BESSY and has to serve as the kemel for the control system of
the planned 3™ generation light source BESSY I1.

GUI Objects
1 l X11R4:
§ - ‘Resources ‘

L s .
52 EGraphlcal’ ~ htion [3O0
=1 Intermediate EaRepresemdtlon

Code > s -t
§-lmerface —
Programming 5 C
Language 'g: Semantic
:t ! § Action

Figure 1: Products of an interactive Interface Builder

The new operator consoles are large high resolution, bitmap
oriented color graphic screens with mouse and keyboard, the
GUI (graphical user interface) is based upon the X—window sys-
tem [5]. Within this graphic system the view of an elementary

GUI object is typically a window that is most frequently com-
posed of a tree of subwindows. It has certain representational
elements, that can be further specified by resource descriptions,
and a definite user interaction semantic.

The complicated task of building GUI's with the X-window
system is simplified by a couple of toolkit libraries. Further
a reasonable number of commercial and public domain GUI
builders are available. They are mostly based upen one of the
toolkits and follow the corresponding style guide. The complex
UIMS’s (user interface management systems) isolate applica-
tion code from the implementation of graphical representation
by an intermediate dialog layer [7]. These support environ-
ments facilitate coding work for the end user without requiring
extensive programming skill.

Interactive GUI builders usually start with the painting of
windows. The semantics is then attached to the graphical entities
using the interface typical to the builder. These GUI builders
produce intermediate code (e.g. in C). After compilation the
results are application programs for the GUT objects or trees of
GUI objects (Fig. 1). Maintenance, developments and tuning
have to deal with the intermediate code.

Non-interactive UIMS are partly programmable in a special
purpose language (UIDL), that has to be compiled, partly inter-
preted by a run time system.

? i T X11R4
Representation
/‘}TCPHP
APpIcduon
]Q ggﬂwalre ga
'E Interiace gﬂ
< &
28 58
& & Software = =
K> un_Interface Ep
N\ EE
<5
Action L ! l

Figure 2: The BESSY non-interactive UIMS

The architecture of the non-interactive UIMS predominantly
used at BESSY is characterised by an interpreting run time
system. Two application programs provide the modularity with
respect to representation and application functionality (Fig. 2).
They are completely build up from non-proprietary software
and present in source code.,

The representational aspects are encapsulated within a sepa-

1168

rale graphics server program we call mapper. They are realised
with the InterViews toolkit [6] but completely invisible to any
application program that addresses the graphics server via the
application software interface. Semantic aspects are interpreted
and the appropriate actions are performed by a flexible and pow-
erful application program we call action language interpreter.
The different instances of GUI objects are defined in plain ascii
description files we call forms.

2 GRAPHIC SERVER

Presently the presentational objects are derived from classes of
the InterViews toolkit (Fig. 3).

— — B
i] =) o
B O N T =
- < S| |
=9 < |G| Color] s E155| e
Iu =22 " = T
et || ey E W AHE El e
o5 ~ ol 8 Sl o | a4 T
5%2 L =l = E = g 5 L
AEHIE B Bl 3 5| E| Sk E
Gl /B TE T
: : sen- |
Tray BorderFFrame tation

Figure 3: Elements of the Presentation Layer

Central object of the graphic server are the data structures of
application variables and the interaction protocol of the event

driven dialog layer.

g anavie
g: g artable ic
g %y |eef Varable e Hint
= =5E Text Graphic | Hing
: 4E 3 Bar WM Hmiy
o Biunap Exit ¥
asdation Tray Color
ale .
able
,g L’g % - Name 4 bie bl
w2 o] Rame fret
LL g Type ariable i’.f’?.‘;“*-w
E"‘ = Permission i
3E Report Class wne] "
: <=4 Dimension bimsg™— :
i g mappe #
g s ' .
. 3 .
1 &0 Command =
Form Instance :
Connection p Leve [
RGNSt Scheduler e — :

Non blocking
Record Marking

physical TCP/P

Protocol *XDR*
Code/Decode

Figure 4: Dialog Layer: Graphic Server Side

On the request to put a GUI object into action the mapper
parses the associated form and builds up the form instance [3].

These linked list data structures separate representational as-
pects from the semantic aspects of the variables (Fig. 4). A
library provides the application with the methods to build up
the corresponding dialog data structure, the application form
instance (Fig. 5). The major part of the representational work
is then done by the communication between application and
mapper instances of the forms. These objects arc logically con-
nected by a physical connection based on an XDR type protocol
on a TCP/IP socket link.

Application programs have no means to change the form
objects by themselves. Every desired effect is coded into a series
of requests sent to the mapper. If they are legal and executable,
the mapper synchronizes the change of the application variables
in both form instances by update reports as soon as they are
processed.

Events from user interactions (keyboard, mouse) are handled
by InterViews Interactors (Fig. 3) and passed to the application
variable referenced by the presentation variable list (Fig. 4).

3 ACTION LANGUAGE INTERPRETER

This general purpose mapper client consists of the software
interface and an interpreter section. Due to the eventdriven
dialog layer it has no apparent sequence flow. The program is
best described by the data structures and functions of its C++
classes addressed by handle routines (Fig. 5).

Code/Decode
i Event
physical Alarm TCP/IP
10
i Top Level
Scheduler
&
2
Z
U arne .
g—é g [t Type. Variable
BEE | |mme
- £ 5
<> 'E Dimension
Application Form Instance
| Connection

Figure S: Dialog Layer: Applications Side

Form Handler

This class is central and unique to the running program. Here
the global variables, actions, window interaction stati (freeze,
unmap), alarm event instructions (timer) of all known GUI en-
tities are referenced, time instances are reported and stored.

Subforms are interpreted and handled, trees of forms generated
and managed.

Name Handler

Since mapper and application are separate programs that might
run on different machines, pointers or addresses are unusable
references. In this base class objects are identified by their
names. Derived name handler classes are the sets ‘subform’
and “action’.

Action Manager

In this set actions and their variables are administered by an
action list. Actions are started by user requests or timer events.
For all local variables the specification of the context (PARENT,
HIGHLIGHT. DISABLE, CURRDIM, MAXDIM) is evaluated.

Expression Tree Handler

This is the implementation of the proper interpreter section.
Language elements are the declaration of variables by the defi-
nition of simple types (char, short, int, long, double) and struc-
tures (mesg, emesg from the message database, syscls_star elc.
from the equipment access calls) or the definition of expressions
like goto, if{...), for(...;...;...). Statements and Syntax are very
similar to *C’.

All functions of the library of equipment access calls, some
of libc.a like stremp(), stracpy(), exp(), log() and some specific
internal functions (fupdate, exec_progs) are built in,

Special Variables

In the forms the usable interpreter functionality is addressed by
special variables (¢.g. FLACTION, FI_AUTOTIME). In this class
the corresponding semantic is implemented.

Two very specific variables are handled here: They allow
for the change to another communication partner, namely the
mapper of another display the next GUI entity should contact
and the field level network deamon on another host that forwards
the associated equipment access calls.

Timer Event Handler

The alarm event handler schedules the subsequent action on the
periodic action list, i.e. autoaction().

Dynamic Table 10

Servers for the maintenance of dynamic lists are started and
configured. Equipment names incoming on an UDP socket of
the dialog layer are added to the current equipment list, the
actual list can be saved, existing configurations restored from
disc.

Process Control

Programs are started by fork() and exec(), the return code is
passed o the caller. This class keeps track of the associated
process ID’s and provides a method to terminate all child pro-
cesses to the parent form.

1169

Debug Module

Debug flags specific to the interpreter modules previously de-
scribed allow for a convenient tracing of command flow.

4 GRAPHICAL USER INTERFACE

Based on the two application programs described above, a com-
plex GUI has been composed with about 5300 lines of statements
in our UIDL, that provides all required synoptic views and in-
teraction tools to the operators.

Control panels provide push buttons for the commands,
scrolled text fields for messages, chooser and edit fields for the
inputof strings. Color fields display status information. Analog
values are shown as horizontal or vertical bars. A comparison
of set points and actual values can be done by arbitrarily config-
urable lists. As layout elements simple graphical elements are
provided.

5 SUMMARY

A run time system of graphics server and action language inter-
preter connected with a GUI definition in a description database
has several advantages in comparison (o the usage of most in-
teractive GUT builders:

- No understanding of the underlaying window system is
required. The GUI is easy to maintain and to extend.

- Graphical representations are already implemented, tested
and stable.

~ Adressing of graphical entities is simplified. Only a selec-
tion of needed and used graphical objects is implemented
and set up properly.

— Flexible load management is possible. Mappers and the
form interpreters can run on any host in the network.

— Maintenance requires only changes in ascii files and no
recompile.

The bandwidth of the mapper-application connection which
could be a matter of concern is perfectly satisfying.

6 REFERENCES

[1] S. Bemstorff et. al., Physica Scripta, 36, 15 (1987)

[2] G.v.Egan-Krieger, R.Miiller, Proceedings of the 2nd European
Particle Accelerator Conference, Nice, pp. 872-874, 875-877
(1990)

3] R.Miiller et. al., Conference Record of the 1991 IEEE Particle
Accelerator Conference, San Francisco, pp. 1311-1313 (1991)

{4] G.v.Egan-Krieger, W.~D. Klotz and R. Maier, IEEE Transactions
on Nuclear Science, N§-30, 2273 (1983)

[5] R. W. Scheifler, J. Gettys, The X window system, ACM Transac-
tions on Graphics, §, 79 (1986)

[6] M. A Linton, J. M. Vlissides and P. R. Calder, Composing User
Interfaces with InterViews, IEEE Computer, 8 (1989)

|7] Robert Seacord, User Interface Management Systems and Appli-
cation Portability, EUUG Newsletter, Vol. 10, Nr. 4 (1990)

