
1149

The COSY Control System
A Computer Distributed Mtdtiprocasor System for Accelerator Control

N. Bongers, U. Hacker, K. Henn, A. Richert, M. Simon,
K. Sobotta, M. Stephan, T. Vashegyi, A. Weinert

Forschungszentrum Jiilich GmbH, Institut fiir Kernphysik, Postfach 1913, D-5170 Jiilich, Germany

Abstract

The COSY control system architecture is organieed
strongly hierarchically with distributed intelligence and
extensive use of standards. At the top level of computer
control hardware work stations give the operator graphi-
cal access to the process. For these tasks Hewlett
Packard HP 9000 Series 700 computers with HP-UX
and X-Windows/Motif are in use. Also used as work-
cells this RISC computers give computing power for
model calculations and long term databases. This
computers are interconnected using Ethernet and
TCP/IP to the next layer of hardware: the workcells
(Fig. 1).

Control - Hierarchy

I AN

t
I

LAN

Figure 1
Individual IbCos

In each subsection a specific Ethernet line connects
all field controllers to the corresponding workcell. Disk
less VME systems contain the datacom CPU and
additional CPU;3 and I/O cards. All CPUs are running
the realtime operating system RT/OS. For slow I/O a
level of G64 systems is introduced below the VME level

and accessed by the PDV-Bus This gives higher
modularity and flexibility in interfacing to geographi-
cally distributed devices.

The model of COSY control
The basic idea of the COSY control system is to

interpret the whole system as an unique operating
system. Every level of the control system is matched to
a corresponding level in the operating system. The
functional level is assigned to the hardware level. The
whole software design is made with this constraint in
mind.

The device connectivity
To describe the technology of dataflow the seven

layer ISO/OSI .model is transformed for device connec-
tion. This model fits in a design for all the protocol
handling software and the interaction between different
places in the control system. This model helps to find
the position in the implementation process where
different layers interoperate and so different modules are
build and connected. This model helps also to identify
the positions where protocols will be used and which are
the contents of the protocols. This is true for protocol
features like address resolution, data validating, hand-
shaking and so on. A second major point is the chance
to fmd with this understanding of protocol states the
places in the implementation process where automatic
protocol creation tools can be used.

Stratenic Design
Keeping all the fundamental ideas in mind we tried

to find a very easy analysis of the dataflow between
accelerator equipment and the man-machine interface.
This analysis covers things like the process picture and a
communication tool called CCTP. With these tools the
implementation platform for a future extension is given.
This extension gives the possibility to connect a know-
ledge baaed system. This system needs to handle a
formalism which allows functions to analyse individually.
The model of data abstraction and data- and function-
encapsulation found in the object oriented languages can
help to come from the analysis of the system to a
design. This design covers all the needs for a later
adaption of an expert system (Fig. 2). The models of
objects on every layer of the control system is the base
for the whole control system. Every object finds a
representation of its state and its data in the proceee
picture. The different layers of the control system use all

CCTP
COSY Control Transaction

Protocol

1 I
Figure 2

I I

the same ‘data and states but with different models
behind it. In the graphical user interface a model
simulates the device action and drives a view of this
model as graphical representation of the object [l].

Topolo~v of realtime applications
In realt,ime applications there are different possibili-

ties to design the system. The workload can be carried
by one huge minicomputer. Another solution is to split
the workload symmetrically. This means every processor
in the system does the same job. When the system
becomes more complex, the dataprocessing can be
achieved in a hierarchical manner. The process I/O will
be done with dedicated realtime systems and the trane-
action procjessing will be done with universal computers.
This is valid for the operating system, where the process
I/O will be done with dedicated realtime systems and the
transaction processing can be achieved by an universal
operating slystem.

Constraints on the operating system software
In our days system software products should be

compatible to the different accepted standards. This is
true for the operating system, the network components
and the graphical user interface. The software develop-
ment system is based on UN*X, graphica will be done
with X windows and networking is still waiting for
OSI-protocols using the TCP/IP protocol stack. Real-
time system software has to take care of these needs.

The dedicated realtime kernel approach
For complex systems with many separated pro-

cessors interacting in resolving one automation task,
there is a need for a separation of the transaction

proceuing and the realtime part of the overall system.
Thii givu a number of advantages. The computem with
a complete operating system including disc are called
hooti (Fig. 3). The pure realtime ryrkmr are called

Constraints for
Open System Architecture

host Coms?le operating sys:em
~rlcl a f~lesysiem
appl~ca:~ans a COnI guramn managenent
dalabases

target cmyng IC.lI,III,C vurl,od
IIIIcrco”“ccI INK CO”i,Ol IYliC,‘, LO ti:c
pCllpllC,d,
a firs ma,orrrcp 111 d.llarcd”<uon

both integrated in ant:

(Patform

In our case Un’x is the platfcrm
for the host environrrienl

Figure 3

targets. The advantage of this approach is the easy way
to bring targets in operation. These considerations allow
small embedded control aa well aa large VME multiprcr
cessor frames to be handled with one realtime kernel.
The COSY control system follows this approach (Fig. 4).

UN*X aa host system operatinE system
As a general operating system UN*X becomea an

industrial standard. On an UN*X system all the transac-
tion based tools likes databases are available. For
software development all tools for the life cycle are
found under UN*X. For an integrated target software
development system the programmer will do all tasks
under the same system appcarence. The revision and
backup handling for both sides are done on the host
side. No pure realtime load makes the program design
and the system tuning tricky. In production phase the
overall configuration and application management
resides on the hosts (Fig. 5). The target does pure
realtime data aquisition and data processing.

The target development system
Development of target software needs a couple of

tools. One of the to& is a compiler, which allows to
make code for the target ryskm. This can be a native
compiler with the feature to make absolute binaries or a
cross compiler for the target hardware platform. More

Architecture
Multiprocessor

dynamic components

’ ;Il
ww h (‘Cl1

UC FCNCLl lx;cn
‘rcrvf’ .~I.~,c 1!(l) l(i) rin,s f%l (‘.II<

RX

Cf’If CPU CPU CPU CPU CPlJ

NET I/O 110 I/O NET NET

\ i

FlCllUU,

,I

Tu,,,n$fl\l\

F--J!

ollm

Figure 4

RT/OS
VME - Host Debugger

display
XII

I

object - high level ___) user
files debuggel interface

host Un’x I
-

target D-MOSi datacom

I
LAN

kernel kernel kemel
debuggel debugger debuggel

9 ik it
Mdulc

z
Mdulr MdUlC

Figure 5

complex is the question of debugging. A remote
debugger consists of 2 parts of software residing as well
on the host as on the target. Target and host should be
connected by different mediaa like ethernet with
TCP/IP. Following this scheme it gives an amplification
in handling the target software development process.

1151

RT/OS the realtime environment
The realtime kernel is developed at JCilich. The

interface definition derives from IEEE 855 micro com-
puter ryrtem interface [2]. There rue a couple of exten-
aion4 to fulfill realtime need in a multiproceaaor 8y8tem.
For many functionr there is a BSD 4.3 conformance
library, which aHows normal progr amming similar to the
development under HP-UX. The networking in achieved
with TCP/IP. For process Icheduling, interprocess
communication and for both the hoet and the target aide
eymmetrical tools are available. The realtime operating
system RT/OS includes also functions to accept the
configuration database on the base of the major number
of a device.

D-MOSI a modular realtime kernel
The design for the realtime kernel is full modular. A

system call interface handles the communication and
synchronisation aspects between the modules.

The integration of a new piece of hardware into a
new device driver and the binding into the kernel is a
job for only a few man days. The primary modules are
the memory management, the data transfer module,
handling the devive driver threads, and the proceaa
management. Depending on the application a process
communication modul, a network module and a pro-
cessor to processor communication module can be
included.

Conclusions
To build large complex realtime applications includ-

ing all aspects of dataprocessing, a separation of devel-
opment and transaction processing on one hand and
realtime process I/O on the other hand is needed. Choose
a platform like HP-UX, build a software development
system on it and this way bring all people to work. The
platform has to have an open system architecture
including tools like X-windows and networking via
TCP/IP. This helps to get rid of the system problems of
the beginning 90s [3].

REFERENCES

PI R.. Maier and U. Pbter for the COSY-Team,
The COSY-Jtilich Project March 1992 Status,
this conference

PI IEEE etd 855, IEEE Trial-Use Standard Specifi-
cation for Microprocessor Operating Systems
Interfaces, 1985

t31 II. Hacker, COSY Control System, ICALEPCS’91,
Tsukuba, Japan, 1991

Only one type of programming tool is needed.

