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Abstract 

During the commissioning of a two-part linac, it is impor- 
tant to determine the beam parameters in the first part in 
order to match the beam with the focusing system of the 
second part. A wire scanner is sufficient to determine the 
phase ellipse parameters at the focusing channel exit of a 
drift tube cavit!y. Five wire scanners placed at equivalent 
points in the periodic focusing channel are used to deter- 
mine the phase ellipse parameters between the DTL and 
the DAWL of the INR linac. 

1 INTRODUCTION 

Two methods ofemittance reconstruction are discussed in 
this paper. The first one uses results of the beam size mea- 
surements carried out by wire scanner under simultaneous 
gradient variation in all focusing elements. This method 
is used in the L,AMPF linac in order to find the quality 
of the beam matching downstream of the first DTL tank 
[I]. The other method allows us to obtain beam parame- 
ters from profile measurements by using five wire scanners 
placed periodica.lly along the focusing channel. 

Let us consider the phase volume projection of the beam 
which is restricted by the ellipse: 

7(r)d + 2a(r)zz’ + #o(T)Z’” = Fo (2) 

At any point along the focusing channel, the parameters 
a, p, 7 are determined by the equations: 

y(r) = c7’(7-)2 + -L- 
U(T)2 ’ 

cY(T) = -0-(T)&(T), 

P(T) = 4+, A-a (3) 

For practical applications it is useful to transfer the el- 
lipse equation to coordinates c, dt/dz with parameters 
p = S. P(T), 7 = 7(7)/S, a = a(~), e = Fe/S. The 
motion of particles in a periodical focusing channel can 
be matched. In this case the fundamental solution is ex- 
pressed by modulus p(7) and phase a(~) of the Floquet 
function. For an unmatched beam, the (T function is 

U(T)” = p2(7) . {C,z + c,z + 2c1c2 cos (2@(T) $0)) (4) 

C: - C,Z = 1 is the normalization condition. It is easy to 
obtain the relation between the beam size and the phase 
ellipse parameters 

2 pz - = IL1 + u2 cos (29(T) + 0) 
Fez P;, 

(5) 
2 GRADIENT VARIATION METHOD 

Due to a shortage of space between OUT DTL tanks, only 
wire scanner can be placed there. This is enough to de- 
termine the phase ellipse parameters of a beam in a pe- 
riodic focusing channel. A small variation of the focusing 
gradients in a long channel causes a change of the phase 
advance of the transverse oscillations. For example, in 
the first DTL tank of the INR linac the phase advance 
is Ab, = 12.847~. Simultaneous deviation of focusing gra- 
dients in a range of 3~6% in the vicinity of the nominal 
value provides a. change of the phase advance of - 2~. 
The center and rms values of the beam sizes are measured 
as function of the focusing gradients in all the quadrupole 
lenses of the DTL tank. 

where u1 = Cf + Ci, u2 = 2ClCz, pox is the modulus of 
the Floquet function at the exit of the focusing channel. 
From Eq. 5 we obtain: 

2 a 
‘zMrP,,,, _ --------.~~-u;=l 
Fox. P:, 

where r,M, P,.,,, are the maximum and minimum beam 
sizes measured as the gradients are varied (Fig. 1). It is 
easy to find: 

r,h4 rzm Fo, = -, 
P&z 

Let us obtain equations for the phase ellipse parameters. 
The solution of the equation of motion on transverse plane 
can be written as: 

Thus, the ellipse parameters can be written as 

P = 2r ‘pii 
d4rPZm 

{riM + rfm + (riM - &) cm 00=} 

cc(T) = ax(T) + a*x*(~) = AU(T) -cos(*(~) + 0) (1) 

where x, x’ is the complex conjugate fundamental set of 
solutions, a(7), V!( 7 is the modulus and phase of fun- ) 
damental solution, & = dz/S, where S is length of the 
focusing period. 

Q=I-- .ir,, bw4z(&4 + r3,)+ 
+ JGiiZi;r~M - Cd cos (@o= + *o=)} (6) 

1 +a2 
7=-----, 7,~ r,, 

P e=SpaZ- 
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Figure 1: Measured beam sizes 
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1 
\koZ := arctan -, 4J 
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The sign of 00, coincides with a sing of derivative r’ at 
G/Go = 1. It, is well known that p and p’ can be expressed 
through the elements of focusing period matrix rn+j : 

p”:c = J& 
tan ea p& = - - 

POT 

where 

J m21 31 - m22 
“Z. -~ sine, = 

ml2 +5GG 

It is clear that expressions like Eq. 6 can be written for 
the y-plane also. In that way it is enough to know the rms 
sizes rzM, rp,,,, , rso to determine the rms-emittance and 
its orientation in phase space. The experimental curves 
obtained at the exit of the first DTL tank for 20-MeV 
beam are plotted in Fig. 1. Using these data it is possible 
to calculate the degree of mis-match. Particularly, from 
Fig. la it is obvious that the bunchers have considerable 
influence on the matching conditions. This comes from 
an increase in the space charge forces. Fig. lb shows the 
curves which have been obtained after careful matching of 
the beam. 

3 PE:RIODIC MEASUREMENTS 
METHOD 

In the transition region between the DTL and the DAWL 
of the INR linac the focusing structure changes from the 

Table 1: Phase ellipse parameters 
I Plane I 4 a en 

X 

Y 

cm/mrad T v cm. mrad 
Design 0.121 0.047 

Measured 0.14 0.19 0.11 _-^ -... . 
Design 0.301 1.386 

Measured 0.26 0.91 0.075 

FODO to FDO. Therefore it is important to determine the 
phase ellipse parameters for beam matching between the 
section. The beam rms-sizes are used to reconstruct the 
phase ellipse. The profile measurements are carried out 
with the wire scanners (WS) placed periodically, through 
one focusing period along the first module of the DAWL. 
The beam matching is done with two quadrupole doublets 
placed between the DTL and the DAWL. 

The problems with reconstructing a, /3, 7 can be seen 
from two models. In the first case the beam envelope can 
be expressed through Floquet function using Eqs. l- 4. A 
practical focusing system is not strictly periodic because 
of small changes of a focusing period’s length. Therefore 
it is better to use the transfer matrices of each focusing 
period. Let us consider ao, p0, 70 the parameters of the 
phase ellipse at location of the first WS. In the position of 
the i-th WS the parameter p is 

pj = c,“&# - 2c;s;an + s,2-f0 

where 

(z ;) 

is the transfer matrix between the first and i-th scanners. 
Parameter pi can be expressed as a function of the beam 
envelope 

where E, is the normalized emittance, ri is the beam size 
obtained from measurements, h = (Pr)i is the relativistic 
factor. Then 

K T? = c?f /%J - 26.s.ooe + s2 
1+ a; 

t I 1 n II n -Ir,, i=lf5 
’ 00 

The solution of this equations is found using the least 
square technique. The values of rms-emittances are shown 
in Table 1. After calculating the ellipse parameters for 
each plane, the beam envelopes have been reconstructed 
(solid line in Fig. 2). Results of the measurement are 
shown by points and the dashed line corresponds to the 
matched beam envelope. The reconstructed phase ellipses 
at the first WS position as well as the tangents obtained by 
the transformation of the measured beam siz& are shown 
in Fig. 3. The error of the rms-size determination is 0.2 
mm and from Fig. 3 we can see sufficiently high precision 
of the emittance reconstruction. The data shown in Fig. 2 
correspond to the design gradient set in all focusing lenses 
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along DTL. The comparison of experimental and ca.lcu- 
lated beam envelopes shows the real focusing channel is 

close to the “‘“i:’ I)REFERENCES 
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Figure 2: Beam envelopes along sixth tank 

Figure 3: Reconstructed phase ellipse and transformed 
tangents 


