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Ahstrac-t 

To control the beam in the synchrotron there may be six 
diffrrrnt primary feedback loops intcrnctitig with the beam 
at a given time. Three loops are local to the rf cavity. They 
are: high bandwidth cavity phase and amplitude loops 
usc~i to rninitrtizc the effects due: to brarn loading and a low 
bandwidth cavity tuning loop Thr loops global to the ring 
acc~lrratitt~; system arc:: a radial loop to keep the beam on 
orbit, a t)c,attl ph<xc loop to dan~p the dipole synchrotron 
oscillat,ions, and a synchronization loop t.o essentially lock 
with the huccecdirig rtiacliin~~ Thcrc are various ways in 
which t~tt~~st~ loops rtiay be desigti~d. Drsigns currently in 
use in opt,rating machines are based on classical freqt1cnc.y 
dottrain tc~chni~lu<5. ‘li) apply mot-lf~rti ft&back controllers 
anil st,udy t,hcx interaction of all the f&back loops, a good 
rrt~~thc;tn;lt,icnl model of the bcartt is extremely useful. In 
this lJ:Lpcr we show t.hcb drrivation of a ttort-linear tracking 
rtic)d~~l itt Ivrtt15 of diftihrc:ttt,ial <~~ui~t.iot~:, ol~taitic~tl from a 
set, of t itnc varying finit.c diffcr~~ttcc tquat.ions. The model 
cc,trtpar~~s wt~ll with t.hcl rrsult,s <If thin clcmcnt tracking 
cotIt3i. 

1 INTROI~IJCTIOIV 

%vt,ral ft4tack loops, nssoc-iat.& wit,h a ttastc low-level 
rf S~S!~VI. liav(’ to IW at,l@ to t,unc-11 th? bc~atll. acctdrr- 

ate wit trout tnducing unwanted coht~rent oscillations and 
t,hc~rc~aft~~r t.itnr thr bunrh posit,iotis rcllativc, to the nrxt, 
higttttr cxttc:rgy tt~irchin~~ for syticltronizatiori. For this pnr- 

p”“C, a l)rtxcisc cont,rol of t hr frrqu<7t’.y phxnc, and arnpli- 
t,uil(> of t,hck accc~lrrat.itig rf signal is rcacluircd. With a good 

contrc~l trx~clt~l WC: w011lti bcnctfit, a grtlnt, deal while plart- 
ning and configuring t.hr f&back loops There are several 
vvays t tits I)t~iuli conl.rol 1ooj)s arc dt:signed. Otica conG\~- 
ahlc way :x by act~uallg measuring t,hg, t,ransf?r functions of 
each pnrantc,trr frotn tlic> control cxnd and t,hett dGgtiing 
t ht. iit)[~rOt>UifLtf’ st,abilizttig dynamics such as the propor- 
tional, diffrrc~tit.ial or irit,egral trrtns. Such an approach 
ttazs at It~as~~ two drawbacks, (i) Lxist.cttce of sornc kind 
of opc‘rat,itig rnachitic t.o ronduct. ~xl)eririiettts and henct, 
1.0 itilprovt~ thr loop prxforrtiance, (Ii) Inaccurate IIlriLSllr<‘- 

ttir>nt.s 1litt3 tc) difficult.ir3 in ronhideritig coupling effects be- 
t.wc,c,n loops. Alt,t~rnativPly, by clxtracting the model from 
t hr, lottgitutiiual heattt tlynattti~s, we CRII drsign t,hc, 100~)s 

‘Operaled by the Universities Rest-arch Association, hr., for 
t tip (1.5 h~mrLm.mt of bl<‘rKy undrr (‘cmtrnc-t NW I)E:-A(:%% 
89Er~‘lrM8!i 

more appropriately. Since almost all the practical imple- 
mentations of the loops are sensitive to errors, a control 
model with appropriate error terms is even more useful. In 
this paper we have shown the derivation of a control model 
by ignoring the local cavity feedback loops, and hence will 
be applicable to only low intensity machines. 

2 PARTICLE TRACKING MODEL 

From the control point of view, it will be useful to have 
the rnodel in differential equation form, although the ac- 
celeration takes place only at, the cavities. However, a 
discrete representation will be a starting point since it is 
closer to reality. Hence a tracking code for one particle 
was obtained to model the longit,udinal phase oscillations 
by giving an energy kick every time t,he particle passes 
through the equivalent cavity gap. This model is shown ill 
Reference, [I] The Matron oscillations arp decoupled in 
the formulalion of such models. The error introduced with 
this type of approximation is very little when there is sub- 
stantial difference between th<> bctatron and syn.chrotron 
frequencies. Since for beam control purpose we are in- 
terested in the phase of the particle with respect to the 
rf signal: it is calculated by knowing the total arrival time 
of the particle. Using the discrete model we tracked one 
part,icle for the Low Energy Rooster at t = 0 to 0.05sec 
with a Gaussian noise in the magnetic field errors. ‘1’h~ 
results compare quit,c well with the Thin Elernent Particle 
Tracking Code by going through each magnetic lens at 5 ns 
time steps. Comparisons are shown in Reference [I]. 

3 NON-LINEAR BEAM CONTROL 
MODEL 

‘L’hc beam control model is derived below using the discretr 
ntod~~l at. first for a single particle, and later WC show t,hrx 
rtiod~~l for a tnult,i~~itrt.iclc~ rassp 

3.1 S~nchrc,llization Model 

l’hp synchronization loop with “trip-plan” approach [2] 
provides the means to phase-lock the reference bunch in 
the lower energy machine with a reference bucket in the 
higher energy machine For simplicity let us consider t.he 
bunch comprising just one particle. If Ii is the time when 
thr reference particlc irl bhe lower energy machine reaches 

the reference point in the kth turn, then the “trip-plan” is 



given by 
(Sk)Tr,p-p,an = u; (ti - t;) (1) 

The superscript, “s” is used to indicate the parameters for 
synchronous particle. If “trip” is the measured phase for 
a non-ideal particle, then for kth turn it is given by 

(Sk) ac,,,a, = (vf + 6Uk) (It - jr;) + fiso (2) 

where Ik is t.he act,ual traversal time of the particle in the 
lower energy machine. This can be written in thr following 
forni for a mnchinc operating br~low transition: 

k 

tk = t; - c 6T,, (3) 
II=1 

The error in synchronizing phase is obtained by subtract- 
ing Eq. 1 from E:q. 2. By ignoring the second order tertns 
an d convert.ing i,hc disc&r error ?quntion to continuous 
form, the phase error is written as 

h.S ” -72 J Or Tdt + OS” 
The deviation in time, &IT, in one traversal can br expressed 
in terms of radial orbit. shift and the field errur. 

4 = 4; + 6dC + 6d” + 4”. (12) 

‘I‘hc phase shift 64’ is included as one of the control input.s, 
since the radial loop can be connected to the global ph<aTt, 
shifter after the frequency source, as in the case of Fermilab 
booster low level rf system. We can write the following 
functional relationship between energy and momentum 

6r d 2 6R 1 ELI 
7=fl-.,-T;ZR” 

6E zr (y)” $3 

(5) 
Substituting the well known equation for the momentum 
change from Reference [l], and by taking the first deriva- 
tive of the resulting energy equation with respect to t,ime 
we obtain: 

Using Eq. 5 in Eq. 4: the phasr error can be expressed in 
the mcrtsurnhlc quantit,ir~s 

il = (111X1 + U112’? + dl,EI? - (LIIT” (6) 

whiw t hi, nw v3riable5 ar? sbowrr in ‘I‘ahlv 1. 

3.2 Hadial clrhit Motfc4 

If I;.‘k is t.hc- c~riwgy in kt,h pass tllrougli l.hcb cavity gap, l.hcw 
the energy for a~t.ual particle, arid a synchronous pnrt,iclc 
is givtsn 1,) t,hc following diff~rc~nc~~ c:qllat.ions [a]: 

l<k -- Ek-1 = e(v; + zivk) sin $?)k 

and 
!I: - F:;_, = eL;I” sin(d;)(i (8) 

where 6L;. is givcln by 

6 L/k = 6 1:; + 6 I;: (9) 

with &VLF as t,hr, cont.rol supplied to t.hr, cavit.y gap volt.- 
age and ~51’~: the error in the cavity voltage for kth turn 
and t&k); i s the particle phase for the ideal synchronous 
case Thr quanCt.y 61’; can bc set t.0 zfyro wtic>n we do 
not use global amplitude feedback. ‘I’hr ctncrgy equation 
is in the finitca tliffrrt%nc-ca form. It can t)r, t,ratisformed t.0 it 
difftvnt.i;il rqtlatioll in tlrr usual way 2s follows. 

where E and E” are assumed to be equal to the energy 
gain per turn of the actual particle and the synchronous 
particle respectively shown by Eqs. 7 and 8. If C;u is the 
change in velocity from the synchronous particle, then by 
using Taylor Series approximation, Eq. 10 can be written 
as below: 

d6E 
- = A3 

dt 
sin(d) - sin(b:)] $ A4611 (11) 
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where the new variables are shown in Table 1. 
The particle phase, 4 can be written in terms of the noni- 

inal synchronous phase, di, the deviation from the syn- 
chronous phase representing the synchrotron oscillations, 
6&, the systematic phase error, tie, and also, a small phase 
shift, 64” as supplied by the controller. That is, 

(13) 

dC;E 
- = /i16R + .-i,y + A2 T + ilzSN. 

dt 
(14) 

The incrcnwntal velocity change in ;t girvri turn I1a.s ii func- 
Lional rrlationship. 

6v 1 

I 

2 CR bU 
- = ~ y”y- F $- F 

C-Y” I2 1 V” 

It is substituted in P:q. 14 and thrn t,he resulting equation 
IS compared with Eq. 11. After simplificat,ion wt get the 
desired equation for thca radial orbital deviations as follows: 

22 = ~222x2 + (~23 - ii*:+) sin(z:j + zq) 

+(u*.g - &.$w) COS(T~ + .?I.$) 

+&, + dz16B + &6b (15) 

where the new variables are shown in ‘I‘ahlc 1 

3.3 Particle Phase A4odftl 

The discrctz> phase: equat,ion is well known and is writ tf,n 
below with error and control t,tarrrls 

ak+~ = dk -t- 2T(fi + bf; + Cflf(7;’ + hk)+ 4’. (Ifi) 

By substituting the equation for 6Tk in terms of the radial 
(IO) 

orbit shift, and the magnetic field errors and converting the 
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Table I : Parameters of the state space model. 
Coefficients: 
U]] = 5 dll = {$j&- 

a12 = u’ 1’7; A --AZ 
q ’ dzl = 5A, 

i?LI& a22 = A, d21 = -2 

(123 = * (1 + qq) cos I$; _ i da = ?$+-& 

22:s = -A, Aa cos f$;, 412 = &$ 

(12’1 17 % (1 $- g) sin 0; /ii = ILqw 

ii24 = - $f sin 46 A2 zx w 
Zrf’& 

a32 = T{. A3 = x.&i 

631 = 271. A4 = a4~j& sin 4; 
As = &hsin& 

Variables: 
x1 =c;s x2 =ER x3 = 6lp” xq = sgs 
u = 6f’ ,j = 6v’ 

V’ 

Errors: 
su 6f’ ??I” I$’ 

equation to continuous form the following state equation 
is obtained: 

ii3 = (132~‘:2 + bJi?l + 1’ - i;J + (t13i6n + 6:~16fe + d32Se) 

iq = - 21 Wj 

where the m~\v notatiorls arr shown in Table 1 above. I> 
shown ahuvc, is riot the> s;tm*’ as vrloc~ty used in FIq. IO. 

4 LINEAR STATE SPACE MODEL 
The rr~~~(lcl slr,>\cn ill tht: previous sc>ct ion can bt- lirlearizcd 
to a t iItl<~-v;uyiI,,g stat.<, spar<’ rllcdi‘l for small anglts [JtliLSi’ 

oscillat,ioris 

I 

il 
i2 
& 
i4 

It IS givrri by 

= [ (I[ i; j:; (jj[i, 

+ 1; -i2.* I;, j1] 1;: 
(18) 

(:learly. thr above equat.ion cali l)? writtcii in a nlort’ gcrl- 
rral st.:itr spat? form RS follows: 

&= 4x+&g L- (l(J) 

whcrcx 11 reprcsrnts the, state vector. d rrprt:sent.s the sys- 
t,crn matrix, n rr,prcsrnts the input matrix and u reprc- 
sents the colttrol vector Eq. 19 is known as state differen- 
tial t~quatiorl. bl:ith f:q. 18 sevt’ral Ilnciar control combina- 
t.ions can hc, analyzed an(l a suitable fc,edback cornpe~~sx- 
tiori can be inclutlmi. 7’hfT non-linear dynarriical equations 
rcprm~~rikd tly ECU. 6, 15 311d 17 can bts used t 0 design loops 

for large ph;wr angle variation. However, in such cases, thz 

single particlt, non-linear model will not be very nccuratr. 

Hence we show a slight modification for the multiparticle 
case below. 

5 MULTIPARTICLE STATE SPACE 
MODEL 

Let us assume that a bunch-to-bucket transfer is used at 
injection into the accelerat,or with a bunch of N part.iclrs 
having energy and phase spread. If 6r1,6rz, , 67~ are 
the traversal times for each particle, then the traversal 
times can be written in terms of 6R1,6R2,. , URN from 
Eq. 5. After substituting the orbit shifts for each part,iclc, 
on the average Eq. 6 can be written as, 

where 

Xl = allfl + a1222 

‘an d error terms do not, change. Similarly, Eq. 15 becomes 
equal to 

z2 = a2222 + (a23 - ZLzp) sin(2’3 + 14) 

-t&24 + (a24 - 624W) COS(z’3 + 24) (21) 

with 

2’s = (64”) = atan 

E3 is defined in Eq. 22 below by rewriting Eq. 17 for mul- 
tlparticle cast:: 

23 = a32rr, + 63,U + 7’ and kq = -v (22j 

wit/i 

j=l 

For a linear model, clearly 1’3 = 13 and matrices n and 
& do not change. 

6 CONCLUSIONS 

A general corrt,rol model is derived in state space form for 
plannirlg and studying the beam control feedback loops. 
The model is obtained at first for a single particle case and 
then it is extcndcd to include multi-partick. Validation 
tests were carried out with a particle tracking code. 
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