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1 INTRODUCTION

The second part of our work presents the mathematical
model of beam losses measurements. This model is based
on the physical picture of the beam loeses distribution de-
scribed in part 1 and mathematical methods of the inter-
pretation and processing of experimental data.

2 MATHEMATICAL MODEL OF THE
SCHEME OF MEASUREMENTS

The physical picture of the development of beam losses
and their registratior by beam losses measurement sys-
tem (BLMS) is represented in the physical part of this
work (part 1). It can be described in the form of the lin-
ear mathematical model (the model of a linear regression)
where the data of each subsequent (with respect to the
beam) beam losses monitor (BLM, radiation monitor or
RM) are the linear superposition of the data of previous
monitors plus a free member:

w (i) = o + araya (3) + -+ axe—ata-1 (1) + . (1) (1)

Here yy (i) are the data of k-th BLM in i-th {i=1,2, .. M)
measurement (cycle), k=1,..N, N is the total number of
radiation monitors, »(4) - random values which define the
errors of the data of k-th BLM [1].

In the frames of the physical model yy¢ signifies the part
of the data of k-th BLM which is not connected with the
data of previous k-1 monitors and is exclusively defined by
beam losses in the area that is controlled by k-th radiation
monitor. It is natural, therefore, to call yxg as own” data
of k-th BLM. Coefficients ay,, define a possible dependence
of the data of corresponding monitors.

We will not discuss here shortcomings of proposed mod-
el (1) pointing out that the results we obtained with its
help do not conflict with the physical picture of the stud-
ied process.

The most common practice is to solve equation (1) with
the use of the technique based on the inethod of least
squares (LSM). Attempts of the direct use of LSM may,
however, cause serious problems connected with the bad
condition [8] of the so-called design matrix (see further)
corresponding to system (1). In this case LSM estimates

become unstable in the sence that relatively small errors
of input data lead to considerable errors of the obtained
solution and the accuracy of these estimates is very low.
It is necessary, therefore, to have some criterion of the
stability of initial system (1). We used the simple numer-
ical criterion that is based on the well-known estimates of
D.W.Marquardt [2] connected with the comparing of ma-
trix eigenvalues and invariant estimates of the condition of
a matrix [8].

If this criterion indicates that the design matrix of sys-
tem (1) is well conditioned then well-known LSM estimates
(see, for example, [7]) of the parameters of system (1) per-
mit to make clear (with the corresponding accuracy) the
disposition of losses sources caused by the charged parti-
cles which were lost from the transported beam.

If the design matrix is badly conditioned then for the
construction of stable estimates ome should use special
mathematical methods. Amongst such methods we point
out the regularization of A.N.Tikhonov [6], the technique
based on the methodes of the principal components [5]. In
our case it was convenient to use some results following
from the method of the reduction of Y.P.Pytiev [1]. One
of the main advantages of the reduction consists in the
correct and from a mathematical point of view relatively
simple use of an additional information about a studied
physical phenomenon. It was particularly important for
us in connection with our plans to continue and evolve
this work in the future. Let us expound some ideas based
on our physical model and developed on the basis of the
reduction.

The concept of the reliability of a model [1] (the tech-
nique of the use of this concept is presented in details, for
example, in {3],[4]) permits to reject effectively the experi-
mental data that are not the realizations of process (1) but
random outliers at measurements. We interpreted these
random cycles as equipment transient errors at the injec-
tion or extraction of a beam. The problem of the robast-
ness [7] of estimates are solved, therefore, automatically.

One can write system (1) in the matrix form:

n = dxzx + wnx, (2)

where 2y =(1x0,ak1,-,0k,k-1), =(3(1),3x(2),-., x(M)),
=1 (1),1x(2),....,tx(M)), matrix elements of A, are eas-
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ily defined from (1).

linear operator Ry:

Convert now (2) with the use of a

Rip=RiAyzr+ Ryx=

=2y + (Re Ax — Ix) zx + Ruia. (3)

Here I, is the unit k x k matrix.

If now Ry is considered as a regularising operator and
Rywx is interpreted as a solution of (2) then such esti-
mate will be accompanied by errors of two kinds: a noise
part Ry1y and a systematic error { Ry Ax- I )z or so-called
”false signal”. The systematic error on the operator differ-
ence (RyAx- Ix) and the unknown vector zy. If there are
not a proper additional information about zx then one has
a natural wish to reduce "false signal” to sero. However,
it is not reasonable if the corresponding noise level is very
high. Moreover, allowing some relatively small systematic
error one can effectively reduce the noise and (as a result)
balance the influence of these two kinds of errors on the
solution [1]. The corresponding stable solution of (2) may
be presented in the form:

Ry = A} (MuA +oxh) ' = (A A + i) T4 (4)

where A} is the transposed matrix Ag, AjAx is the de-
sign matrix for system (1), parameter wy is defined by the
relation of levels of the resulting noise and "false signal”
[1]-

Let us assume now that certain a priori information al-
lows to surmise that some BLMS consisting of L (less than
N) specially disposed BLM permits to find all possible loss-
es sources. It is evident that in accordance with our model
and in the frames defined by the corresponding errors the
sum of "own” BLM data (we use the abbreviation SOD for
this sum) must be the same for all such systems (we call
them "hermetic”). This fact, on one hand, can be used
as an additional information to obtain unknown parame-
ters of (1) and, on the other hand, can be used to identify
various "hermetic” BLMS.

On the basis of the results mentioned above we have cre-
ated the special package of application programs. These
programs running on the computers of the IHEP (Protvi-
no) distributed computer network execute the data acqui-
sition, permit to solve system (1) and represent the ob-
tained results in the form of various histograms, pictures
and tables.

3 RESULTS OF DATA PROCESSING

The proposed method was tested with the use of the
experimental data obtained from the part of the chan-
nel for the tiransportation of an intensive (approx.
2 x 103 protons/cycle) beam from the U-70 IHEP accel-
erator to an experimental area. BLM were disposed at the
places of the most probable {on the basis of the relations of
apertures and envelopes) beam losses. The matter of beam
profile monitors (BPM) was used as beam losses sources.

Losces level All BPM are in the beam

frelatie mits) The data of BLM4 and BLMR
700 are not inchuded in the processing

600 -
500 - SO0 = 1490 £ 270
400 -
300 4

200 +
100 4 l
0+ ——t

800 Al BFM are e thes baam
700 -
600 1 SO0 - 1850340
500 4
400 -
300
200 -
100

04

' 2 3 4 5 6 7 8 9 10 11

Beam losses monitors.

Figure 1: Results of measurements and processing (1).
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Figure 2: Results of measurements and processing (2}.
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Table 1: An example of the distribution of the data of radiation monitors.

BLM 2 3 4 5 6 7 8 9 10 11
number

2 100%

3 9% 91%

4 2% 2% | 96%

5 - 1% | 53% | 46%

6 - 1% [ 61% | 1% | 37%

7 - 1% | 60% | 1% 2% | 36%

8 - 1% [ 64% | 1% - 2% | 32%

9 - 1% | 38% | 1% - - 1% | 59%

10 - 1% | 58% | 1% - - 1% 1% | 38%

11 - 1% | 10% | 1% - - 1% 1% | 20% | 66%

Tens of working regimes of this beam extraction subsys-
tem were processed with the use of the proposed method.

The histograms in fig.1-2 show the results obtained ex-
perimentally at some regimes and processed (the dark part
of each histogram) with the use of linear model (1). To ex-
amine the properties of our measuring system the results
of all regimes were also processed without the data of some
BLM. The most critical area of the beam transport chan-
nel was controlled by BLM4 and BLM5 (see physical part
of this work - part 1). That is why we want to demonstrate
here some results obtained without the data of these ra-
diation monitors. Fig.1-2 are the illustrations of the fact
that the disposition and the physical characteristics of our
radiation monitors permits BLMS to remain "hermetic”
in the worst possible case for this diagnostic system.

We note that in all cases represented here the total rel-
ative procedural and measurement errors were assumed to
be equal to 5-10%. The resulting noise errors of the ob-
tained solutions were 10-25% and typical ”false signals”
(Rx Ax - It )2y were 20-30% of the corresponding (i) val-
ues. A simple analysis of the obtained coefficients ay,, al-
lowed us to locate the primary losses sources which formed
the observed radiation field along the channel. Consider
an example presented in Table 1. The rows of this table
describe the distribution of the total signal of each BLM
obtained in one of the processed regimes. The columns
show the shares of this signal which are interpreted as the
results of the actions of the primary losses sources local-
ised in the areas controlled by the corresponding radiation
monitors.

4 CONCLUSION

One of the main purposes of our paper was to demonstrate
one more time that the use of mathematical methods based
on the physical picture of a studied phenomenon can add
new features to a measuring system.

In our view the future of the mathematical part of this
work can be formulated in the next form:

a) to test the proposed technique for circular accelera-
tors and their separate parts;

b} to construct and to test a mathematical model {or

models) which not only is adequate to the physical pic-
ture of the beam losses distribution in accelerators and
to the physical characteristics of BLMS but also allow the
most effective application of the ideas of the method of the
reduction connected with the use of a various additional
information: data of all possible diagnostic devices, results
of modelling calculations etc.
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