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Abstract 

We consider the conservative Hhon mapping, which is the 
one dimensional model of a FODO cell with a sextupole 
nonlinearity. We analyse the well known problem of esti- 
mating the dynamic aperture of such a model with analyt- 
ical tools. A complete solution can be found by drawing 
the stable and unstable manifolds which emanate from the 
fixed point of the map; the envelope of these manifolds ex- 
actly reproduces the boundary of stability of the model. 
Some numerical ‘examples are given. 

1 INTRODUCTION 

The computation of the dynamic aperture of a magnetic 
lattice using analytical tools is an open problem in acceler- 
ator physics. The standard numerical approach, based on 
tracking, has the main drawback of giving no theoretical 
understanding of the mechanism which drives the stability 
boundary. On the other hand, also in the very simple case 
of a single sextupole nonlinearity in the one dimensional 
case (i.e., the Henon map [l], [z]), a reliable analytical 
estimate of the dynamic aperture is not available. 

In this paper we show that the stability boundary of the 
Henon map is determined by the envelope of the invariant 
manifolds that emanate from the hyperbolic fixed point 
of the map itself [3]: such manifolds, through eteroclinic 
intersections with the invariant manifolds of the fixed cy- 
cles, explore all t.he chaotic region, reaching the border of 
stability of the map. The same mechanism should rule the 
dynamic aperture of generic one dimensional polynomial 
maps; in the two dimensional case a further analysis is re- 
quired, since also the definition of dynamic aperture itself 
is not well posed. 

In Section 2 we introduce the HPnon map, showing that 
it is the Poincare section of a one dimensional magnetic 
lattice with a single sextupole nonlinearity; in Section 3 
we define and compute the fixed points. In Section 4 we 
outline the method, giving an analytical proof for the case 
in + 0 and giving numerical evidence for the generic case. 
Open problems and conclusions are given in Section 5. 

2 THE MODEL 

We consider a one dimensional model of a magnetic lattice, 
whose hamiltonian reads: 
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where (i,fi) are the Courant-Snyder coordinates, p the 
beta function and k,(s) the value of the non integrated 
gradient of the magnetic field. 

We consider a lattice made up of N identical cells of 
lenght L, each cell having the phase shift w, containing 
a sextupole in the kick approximation located at s = jL, 
j t 2, whose integrated gradient is Kz. In this case the 
hamiltonian reads: 
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We compute the PoincarC map of this cell, i.e. a function 
which gives the phase space position of a particle imme- 
diately before the second sextupole placed at s = L as 
a function of the phase space coordinates of the particle 
immediately before the first sextupole (s = O-); we define 

{ 
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(2,3) 

From O+ to L- the solution is trivial, since the nonlinearity 
is zero and the Courant Snyder coordinates simply rotate 
by the phase shift w: 

(2.4) 

where R(w) denotes a two dimensional rotation matrix. 
Integrating around the kick one has: 

it - g- = lim J c aH(S) (js = 0 c-0 --( al; 
-+ - P I;- = - jk! J z q$LS = -+)q$ --t 

(2.5) 
Therefore the map of the lattice model reads 

(a:) = R(w) ($- pK2&(i-)2,2). c24 

We can get rid of the constants /3 and K2 by scaling the 
coordinates and the momenta by a factor 2 

K1Jp?i 
s: in the 

new variables (x’,p’) and (x, p) the map is: 

(;:) =R(w) (p:z2) 3 
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which explicitely reads 4.2 Case w z 0 

5’ = xcosw + (p- 2’)sinw 

p’ = -2sinw + (p- z2)cosw; (2.8) 

such a map is the simplest non trivial nonlinear map, and 
was first proposed by HCnon [I]. 

Every map obtained as a Poincare section of a hamil- 
tonian is symplectic; in the one dimensional case such a 
condition is equivalent to the area--preserving constraint: 

The problem of the computation of the dynamic aperture 
can be solved by analytical tools when the frequency of the 
Hdnon map is close to zero. Using the same techniques we 
have been discussed in section 2 one can show that HCnon 
map (2.8) can be seen as the exact Poincark section of the 
following time dependent hamiltonian: 

H(r,p;s) = up? - G C E(s - j). (4.1) 
IEZ 
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3 FIXED POINTS 

(2.9) 

The qualitative behaviour of a map (z’)p’) = F(x,P) is 
determined by its fixed points and cycles; a fixed point is 
defined by the equation 

(x0, PO) = F(so,Po), (3.1) 

i.e. is invariant under the application of the map; a fixed 
cycle of order m is a set of m points which is invariant un- 
der the application of the map iterated m times. The fixed 
points and cycles are classified according to the eigenval- 
ues (Xr, X2) of the linearized map: if they are distinct, 
complex conjugate of modulus one, the point is elliptic 
(like, for instance, the origin in the H&non map); if they 
are distinct, real, and XrXz = 1, the point is hyperbolic; 
if X1 = X2 =: 1 the point is parabolic. Other possibilities 
are excluded by the area-preserving character of the map 
(2.9). 

The Henon map has two fixed points: one is the ori- 
gin and the other one can be easily computed by solving 
equation (3.1). After eliminating the 11 + z2 term we ob- 
tain p = --x tan(uj/2) and then r = 2 tan(iu/2). As a 
consequence the fixed point (zo,po) reads 

w 
x0 = 2 tan - 

2’ 
po = -2 tan’ F. (3.2) 

This point is always hyperbolic for w # 0; such a property 
can be proved by computing the trace of the map linearized 
around (x0, po), which is 2[1 + 2 sin”(u/Z)] > 2 for ic’ # 0. 

4 COMPUTATION OF THE 
DYNAMIC APERTURE 

4.1 Defiqition of dynamic aperture 

The dynamic aperture is defined as the border of the global 
stability domain! i.e. the minimum amplitude where one 
can have an unbounded motion. In the one dimensional 
case this quantity is well defined, since the invariant curves 
are a topological barrier to the motion: every particle 
which starts inside an invariant curve will remain there for- 
ever. Polynomial maps of finite order like the Hinon map 
always have a finite dynamic aperture (except some cases 
which are totally non generic) as there is a distance to the 

origin where the higher order nonlinearities are dominant 

If we perform the scaling 

x = WE p=wv 
H = Kw3 1 = SW, (4.2) 

which preserves the motion equations, the new hamilto- 
nian K reads 

7j2 + (” 
KC<, v; 1) = 2 - 

t3 3w C 6(7! - jw); (4.3) 
ICZ 

the advantage of such a resealing is that in the limit w + 0 
the distribution w C,e~ 6(t - jw) tends to one, and one 
recovers a time independent integrable hamiltonian 

v2+P E3 Jil; K((, 7; t) = 2 - -, 
3 (4.4) 

Since a time independent one dimensional hamiltonian is 
always integrable, its dynamic aperture is given by the 
location of the unstable fixed point [ = 1 and its related 
manifold, which satisfies 

3($ + <“) - 2(3 = 1, (4.5) 

and transformed to the original coordinates reads 

3w(p2 + x2) - 2x3 = w3. (4.6) 

4.3 Generic case 

When the linear frequency is far enough from zero, we 
cannot reduce the map to the time independent hamilto- 
nian (4.4), and a simple analytical estimate of the dynamic 
aperture cannot be given. Nevertheless the situation is not 
different as there is a strong numerical evidence that also 
in this case the stability boundary is driven by the stable 
and unstable manifold of the hyperbolic fixed point of the 

and therefore one has a fast escape to infinity. map. 
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Figure 1. Invariant manifolds of the hyperbolic fixed 
point of the Hinon map with i, = .21 

1 
Figure 2. Stability domain of the H&on map 

with LJ = .21 (direct tracking) 

Such manifolds can be computed with a numerical 
method, iterating a given number of initial conditions 
which lie on the linear manifolds in the neighborhood of 
the fixed point; in Figure 1 we draw the stable and unsta- 
ble manifolds with the related homoclinc tangle for w close 
to resonance five; the comparison to the stability domain 
(Figure 2) shows an excellent agreement: the invariant 
manifolds of F enter the chaotic sea and reach the bor- 
der of stability. Finally, in Figure 3 we plot the dynamic 
aperture of the HPnon map in its dependence on the linear 
frequency w; the comparison between the tracking values 
(solid line) and the analytical estimate based on the above 
outlined method (squares) shows an impressive agreement. 

2 
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Figure 3. Dynamic aperture of the H&on map versus w: 
invariant manifolds (squares) and tracking (solid line) 

5 OPEN PROBLEMS AND 
CONCLUSIONS 

The outlined method allows to understand how the dy- 
namic aperture of the H&on map is given by the location 
of the invariant manifolds of the hyperbolic fixed point. 
The same picture should hold for a generic one dimen- 
sional map; in principle such a map has several hyperbolic 
fixed points: the dynamic aperture should be computed by 
drawing the invariant manifolds relative to all these points. 

In two dimensional models the concept itself of dynamic 
aperture is not theoretically well-defined, since the invari- 
ant tori are not a topological barrier to the diffusion: in 
fact a particle which starts close to the origin could escape 
to infinity through the net of resonances (Arnold diffu- 
sion). Therefore the generalization of the proposed method 
is not trivial, and requires further investigation and a well 
defined dynamic aperture. 
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