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Abstract 

The longitudinal and transverse coupling impedances pro- 
duced by a small pumping hole in the walls of an accel- 
erator vacuum chamber are analytically evaluated at fre- 
quencies below cut-off. The method developed is based on 
the Bethe theory of diffraction by small holes. The esti- 
mates of the contribution from such elements to the cou- 
pling impedance of the UNK and LHC vacuum chambers 
are obtained. 

1 INTRODUCTION 

There is a general tendency to minimize beam-chamber 
coupling impedances to avoid beam instabilities and re- 
duce heating. In doing so one tends to shield enlarge- 
ments of the vacuum chamber, i.e. vacuum boxes, bellows, 
etc. On the other hand, the presence of vacuum pump 
ing holes in the shields is required to provide high vacuum 
inside the beam pipe. The number of such elements can 
be very large in big machines. For example, so called lin- 
ers in the UNK chamber have nearly lo5 slots. The LHC 
design includes a thermal screen with lo7 small holes for 
pumping. So, the evaluation of the coupling impedances 
for these chamber elements is of great importance. Due to 
the absence of axial symmetry, a numerical solution to the 
problem is to be essentially three-dimensional. It implies 
time-consuming computations even for simplified models. 
This paper presents the analytical calculation of the cou- 
pling impedances for a small pumping hole in the chamber 
with an arbitrary cross section. 

2 EVALUATION METHOD 

To evaluate the coupling impedance we have to calculate 
the fields induced in the chamber by a given current pertur- 
bation. The fields produced by a relativistic point charge 
in the chamber without hole are evaluated easily and then 
can be considered as incident electromagnetic waves on the 
hole. According to the Bethe theory of diffraction by small 
holes (11, the diffracted fields can be obtained as those ra- 
diated by effective surface “magnetic” currents or, in the 
case of a small hole, simply by effective electric and mag- 
netic dipoles. Thus, when this approach is applicable, one 
can replace the excited hole by effective dipoles, evaluate 
the fields radiated by them inside the chamber and obtain 
the coupling impedance. 

We consider an infinite cylindrical pipe with an arbitrary 
cross section S and perfectly conducting walls. The z axis 
is directed along the pipe axis, a hole is located at the 

point ($,z = 0), and a typical hole sire h satisfies h < 
6. The point charge g moves with velocity II = c along 
the chamber axis with a transverse offset 5’. Then the 
e.m. fields harmonics i!?(O), z(O), which would be produced 
by this charge on the chamber wall without hole, can be 
expressed as a series 

EP)(i, z; w) = z,ap(b’, z;w) 

= -ZoqeikZ c &L%m(qvvlln”(~) , (1) 
n,m 

where X,,, &“(rJ are eigenvalues and orthonormalized 
eigenfunctions (EF) of the 2D boundary problem in S: 

pa + Awn) 3wn = 0 ; 1cIta7& = 0 . (2) 

All other components vanish on the wall. In the case of a 
circular cross section with radius b the field harmonics on 
the hole, i.e. in (r = b,cp = ph), are 

E$“‘(b, $?,,, 0; ‘d) = &,ffp)(b, ‘P,,, 0;W) 

=s 1+2~(~)~coS~($7~-P~) 
1 

, (3) 
?I=1 1 

where p, is the azimuth angle of the beam. 
Under conditions h << 6, wh/c < 1 and A < h, where A 

is the wall thickness, one can consider the hole excitation 
by the fields (1) in the spirit of Bethe’s approach. To 
satisfy the boundary conditions on the hole, the effective 
surface “magnetic” charge density hsp and current fmas 
have to be introduced. To calculate the fields produced 
by this current at distances R from the hole, R > h, one 
can replace the excited hole by effective dipoles, which are 
expressed simply in terms of the incident fields (1): 

ti = a,lp ; p’= q&p , (4) 

where the magnetic a, and electric a, polarisabilities can 
be analytically evaluated in the case of an elliptic hole [2]. 

For the particular case of a circular hole with radius h, 

a, = 4h3/3 ; a, = -2h3/3 . (5) 

For a narrow longitudinal slot with width w < 1 

a, = lrlwa/24 ; a, = -rlwa/24 (6) 

and the condition for applying Bethe’s theory is wl/c < 1. 
The longitudinal impedance can be defined as 

qw;z,q = -1 Jrn 9 -cc 
dzemik’ E, (6 z; w) , (7) 
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where k = w/c, t’iz the transverse offset of a test charge, 
and the component E, of the e.m. field, radiated by the 
effective currents inside the chamber, depends on S: The 
usual definition corresponds to a’= t’= 0. We expand the 
radiated fields in a series in waveguide eigenmodes [2] 

_ .~-. .~ -i -~~-. - _ 

Elliptic.,.;--- M-r 
,_,’ _/*‘c 

I 

F’ = c (d:Az) + bnmeLe(-z)) , (8) 
nm 

where F’ means either E’ or 2 and superscripts ‘A’ do 
note fields with propagation factors exp(FI’,,z), I’,,,,, = 
(Aim - P)1/2, radiated respectively in the positive (+, 
z > 0) or negative (-, z < 0) direction. The unknown 
coefficients a,,,,, and b,, can be found from the Lorentz 
reciprocity theorem (e.g., [2]) as 
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Figure 1: Ratio e,/eC versus azimuth angle 

in which M and P are given by Eqs. 4, and the expansion 
of the integral is justified for a small hole. 

3 LONGITUDINAL IMPEDANCE 

Substituting Eqs. 8-9 into Eq. 7 one can easily integrate 
over z when w < wNt (all I’,, > 0). Taking into account 
Eq. 4, we get the longitudinal impedance of a hole: 

For a very narrow longitudinal slot with account of Eq. 
6 we would get Z(w) = 0, i.e. the impedance vanishes to 
the first-order approximation of our approach. It seems 
natural since such a slot does not interrupt essentially in- 
duced wall currents. Taking into account next-to-leading 
terms (when UJ a 2 < b) leads to 

Z(w; Z,fl = -iZ~~(a, + om)ev(b”)ev(i) , (10) 

Z(y,.d~++) . (13) 

where e,(q z tp = 
0 

-c ~~~~,“(+%h?l(~) 
n,m 

For a rectangular chamber with width a and height 
b, in which a hole in the side wall (xh = *a/2) is displaced 
from the plane y = 0 by yh, ]yh] < b/2, &J. 10 yields 

is just a normalized beam electric field on the hole, i.e. the 
solution of a standard 2D electrostatic problem in region S: 
to find an electric field on a conductive boundary produced 
by a charge placed in point C. For simple cases e, can be 
obtained easily from the Gauss law, e.g., for a circular 
chamber cross section e,(O) = 1/(2xb), cf. Eq. 3, and 

Z(w) = -i&- W (Qe + %a) X3 
C b2 ’ (14) 

where Cr 
O” cos(2m + l)*yJb lx m=O cosh(2m + l)arh/b 

is the fast-converging series. 

w (a, + %n) 
Z(w) = 420, 

4r2ba ’ (11) 

This result was obtained earlier by direct summation [3]. 
In the case of a circular hole of radius h the polarizabiities 
are given by Eq. 5 and 

For an arbitrary cross section the best way to cal- 
culate the longitudinal impedance produced by a hole is 
to solve numerically the 2D problem for e, and obtain a 
result simply from a comparison with that for a circular 
cross section: 

Z(w) = -i$$ ) (12) 

2 = & (ev/ec)2 , (15) 

where 2, is given by E<1. 11. Fig. 1 shows ratios e,/e, 
for the square chamber 70 x 70 mm2 and elliptic one with 
semiaxes 40 and 30 mm. The code MGDP [6] has been 
used and e, was tahen at radius b =35 mm. 

which shows an inductive contribution of the hole (we 
use exp(-iwt) time-dependence). Numerical result [4] ob- 
tained by using the 3D code T3 coincides welI with this 
analytical result (factor w 0.017 instead of the exact one 
1/(6zz) = 1.69. 10m2). It should be noted, that for a circu- 
lar hole the dependence on the hole radius h and chamber 
one b can be simply derived in a qualitative way.’ Re Z is 
much smaller than ]ImZ], see [3] and [5]. 

4 TRANSVERSE IMPEDANCE 

The dipole transverse impedance is defined by 

-l 
z*(w;z,~)= -$lw dzeviks [Z+ZJX 21, , (16) 

e3 

‘K. Bane, privmte cod cation md 141 

where the diffracted fields in the RHS are taken at ({ z; w), 
. . . @ + (O,O, 1) and the limit of u -+ 0, t -+ 0 is usually 
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assumed. It is clear that both the E- and H-eigenmodes 
contribute to the integral dislike Eq. 7. After calculations 
similar to those for the longitudinal case we get 

%(od = -; c [x;~(%)t(fhJ,, * &O)h 
n,m 

+ &(B x ~xm)t(~xnm 4&h] 1 (17) 

where K. nm, xn,,,(~T are eigenvalues and EF of Eq. 2 sub 
jetted to another boundary condition, xnrnles = 0. The 
effective moments in the RHS are assumed to be produced 

by a dipole beam-field component, i.e. P, M w. s, cf. n = 1 
term in EGq. 3. 

In the case of a circular cross section 

Zl(W) = -izo 
%?I+%, 

?r2b4 ah -(‘+‘h - ‘+‘b) , (18) 

where &, is the unit vector directed to the hole, ph, (ab = 
‘p, = q: are asimuth angles of the hole and beam. This 
means that the deflecting force is directed to (or opposite 
to) the hole and its value depends on the asimuth angle 
between the beam-offset vector and the direction to the 
hole. For two particular cases we can obtain from Eq. 18: 
the transverse impedance of a circular hole is 

2h3 
Z,(w) = -iz,- 3rlb,‘ih +‘J’h - (ob) 

and that of a narrow slot is 

(19) 

Zl(W) = -iz, &(In++hcos(~h-pb). (20) 

It can be concluded from Eqs. 12,13,19,20 that both the 
longitudinal and transverse coupling impedances of a nar- 
row slot are essentially lower than those of a circular hole 
with the same pumping area. 

If we consider M (M 1 3) holes uniformly spaced in one 
cross section, the resulting impedance is 

%n-+-~,M, Z~(W) = --iz,-- =2b’ 2 ab ’ 

where &, is the unit vector in the direction of the beam 
transverse offset. It is seen that the deflecting force is now 
directed along the beam displacement, i.e. some restora- 
tion of the axial symmetry occurs, and the maximum value 
of ZJ. is only M/2 times larger than that for M = 1. 

In the case of a rectangular cross section 

.f&) = -iZoa2(a, + (r&b’ (22) 

‘[&& + e’,c2](& co8 vb + x2 sin pb) , 

where X1 z 
Q, (2m+1) COS(2tTI+ l)Xyh/b 

c 
m=O 

sinh(2m + l)rz,,/b ’ 

c2 ~ 5 2msh 2mrYh/b . 

m=O cash 2mi?zh/b 

It follows from Eqs. 14 and 22 that the impedances of a 
hole in the rectangular chamber vanish when lyhl + b/2, 
i.e. a hole is near one of the corners. 

5 ESTIMATES AND CONCLUSIONS 

At frequencies below cut-off, small discontinuities con- 
tribute additively to the coupling impedance. We assume 
this additivity for estimates, but for higher frequencies the 
problem still remaius to be examined, see [5]. 

Let us estimate the impedances produced by the pump 
ing slots in the UNK liners. Approximately N = 3260 
vacuum boxes with bellows are to be shielded by these lin- 
ers and every liner has M = 26 pumping slots with width 
w = 0.6 cm and length 1 = 6 cm. We take the chamber 
radius b = 3.5 cm and the machine one R = 3306 m. Since 
in this case 1 > b the figures obtained are rough. Appror- 
imating slots by long elliptic holes of the same area, with 
the length 1 and effective width w,~ = 4w/r, we get the 
coupling impedances: 

Table 1: Impedance Estimates for UNK Slots 
IZ/nl / Ohm ZI / (Ohm/m) 

One slot 4.3 ’ 10-s 0.46 
One liner 1.1 * 10-6 6.0 

I 

[ Total [ 3.6.10-3 1 2 * 104 

In the LHC design it is supposed to shield the cold cham- 
ber walls by an internal thermal screen, which has N = lo7 
pumping holes with radius h = 2 mm. With longitudinal 
spacing d = 1 cm and machine radius R = 4243 m, there 
will be nearly M = 4 holes in a chamber cross section. We 
take the mean radius of the thermal screen b = 1.5 cm for 
estimates. The figures are shown below. 

Table 2: Impedances of the LHC Holes 

IZ/nl/ Ohm ZL / (Ohm/m) 

One hole 5.3 - 10-s 4.0 

One cross section 2.1.10-7 8.0 

Total 0.53 2 * 107 

The values of the longitudinal and especially transverse 
total impedance are very large. So, we conclude that some 
modifications of this thermal-screen construction (say, re- 
placing holes by slots) are necessary. 
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