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Abstract 

A set of non-linear differential equations has been derived 
to describe the ion motion in a spiral inflector by using a 
coordinate system moving with the central trajectory. In this 
formulation, an electric potential has been introduced instead 
of treating the electric field directly. The differential equations 
together with the potential can be used to get the ion-optical 
properties of the spiral inflector with various forms of the 
electrodes and to study approximately the effects of the edge of 
the electrodes and those of the space charge. The same 
formulation (can be shown to be valid also in the cases of non- 
uniform magnetic field when the field distribution is given 
and the trajectory is known numerically. 

1. INTRODUCTION 

The spiral inflector has been known since the early stage 
of the vertical injection of the ions into cyclotrons [I], and it 
is now widely used for large and small cyclotrons. The 
analyses of the ion orbit have been made in the simple cases 
of the so-called untilted and tilted electrodes [2,3]. The 
method used so far employed has tried to construct the electric 
field produced by the electrodes, which satisfies the Maxwell 
equations [3:1. 

In order to design an inflector for the SF cyclotron at the 
Institute for Nuclear Study, University of Tokyo, we 
investigated the ion motion for both the centraI and the non- 
central cases. We examined the central orbit from a point of 
view that the electric field acts like a magnetic field and vice 
versa in the meaning that both bends the ions into the 
direction perpendicular to the their velocity. It has been 
shown that a simple solution exists which includes the types 
already known as its special cases of the integration constants 
in addition to a new possibility. 

For the non-central ions, we have derived a set of 
simultaneous differential equations by using a coordinate 
system moving with the central trajectory. It can be solved 
by numerical integration. This formulation introduces an 
electric potential to describe the electric field produced by the 
inflector electrodes instead of treating the electric field directly. 
The potential makes it possible to calculate the optical 
properties as well as the transmission efficiency and the 
numerical data for machining the electrode surfaces. 

A method has been devised to expand the electric potential 
around the reference trajectory in power series of the deviation 
from the trajectory to satisfy the Laplace equation starting 
from a simplle polynomial, although the Laplace equation in 
our case has a somewhat complicated form due to the twist of 
the reference trajectory. As a numerical example, design of an 
inflector for the SF cyclotron is discussed. 

2. ION ORBITS IN A SPIRAL INFLJZCYDR 

2.1 Central Orbits in a Uniform Magnetic Field 

An ion with mass m and charge e is moving with velocity 
v in a magnetic field B and an electric field E produced by a 
pair of the inflector electrodes. The electric field should be 
always perpendicular to the ion velocity. Let’s consider three 
unit vectors, r, e, and n, of the coordinate system moving 
with the central orbit, C, where t is the tangent to C, e is 
perpendicular lo t and n = I x e. We take the length along 
the orbit s=vt as the independent variable, and write the 
electric and magnetic fields as 

E=$(Ke - Fn) 

axl 
B=!!J..Lb 

e 
where K and F are &me functions of s. Then the equations of 
motion can be written in a form 

1’ = Ke - Fn + (I x b), (1) 
where the prime designates the differentiation with respect to 
s. It can be shown that the three unit vectors must sratisfy the 
following equations, 

e’=-Kt+Gn+(exb) (2) 
nd 

n’= - Ge + Ft + (n x b), (3) 

together with Eq.(l), where G is another function of s. It 
should be remarked that the electric field acts like a magnetic 
field in a spiral inflector so far as the central trajectory is 
concerned since the kinetic energy is constant. This fact is 
embodied in these equations. 

The system of equations has been found to have a simple 
analytical form when the magnetic field is uniform and K = 
K,, F = K,sin (a), G = - K. cm (a) and a = G, + Kp, where 
K,, K, and a, are constants. The solution has three 
parameters and includes both the untilted (KO = 0) and tilted 
(K, f 0, K. f 0, a, = 0) cases already known. It should be 
remarked that the usual tilted inflector has an electric field 
which increases as s. In addition to them, the solution 
contains the cases of the lilted electrodes with both constant 
(K,=O,K,,#OO,a,#O)anddecreasing(K,#O,K,#O,a,= 
~$2) electric field strengths. Thus. it gives more flexibility 
for matching the inflector orbit to the cyclotron acceleration 
orbit and better optical properties. 



2.2 Non-Cenlral Orbits 

In the case of the non-central orbit, it is also convenient to 
introduce a length variable, IA = vt. Note that v is the velocity 
of the reference ion, and therefore u is not the length along the 
trajectory but rather the transit time of the ion under 
consideration. ‘Then the equations of motion of the non- 
central ions can be written just in the same form as that of the 
central trajectory 

Take a point Q on the orbit under consideration at time I. 
Find a plane containing Q and perpendicular to the tangent of 
C. Let the intersecting point of this plane with C be P, 
whose distance along the trajectory be s. The radius vector of 
Q in this plane with the origin at P be q. In this way, s is a 
function of u. So long as a small region around C is 
considered, this tarrespondence is unique and we can define a 
single-valued function, I( = f(s). Once this correspondence is 
established, it is more convenient to use s as the independent 
variable rather tlhan u, since all quantities concerning C are 
expressed as functions of s. This method is usually employed 
in the theory of particle accelerators in which the radius of 
curvature is negligible. In our case, however, the twist of the 
reference ctuve is not negligible and the tangential electric 
field appears in the equations for non-central orbits even if it 
does not exist on the central trajectory. 

By definition, 

q=r-rc (4) 
ad 

q.t=o , (5) 
where ris the radius vectors of the ion under consideration, 
and r,, that of the central orbit. respectively. Let’s introduce 
another vector, 

,=Lk. t 
dll . (6) 

By differentiating IQ.(S) with respect to s, the differential 
equation for the function u is derived as 

ul= --A.--. 
l+p.t, (7) 

A = 1 - (I’. e)(q . e) + (n’ r)(q n). (8) 
This function introduces main non-linearity into the 
equations, which arises from the fact that the non-central ion 
changes its energy along the trajectory and the path length is 
different from that of the central ion. Similarly, using the 
equations of motion, we have the simultaneous differential 
equations for q and p, 

4 ’ = u’p + (24’ - 1)r (9) 
ad 

p’ 5 (u’ - l)[K, + (I x Bc) I 
+u’[(K-K,)+(tx(b-Ir,))l+u’(pxb) (10) 

where K, and K are the electric curvatures at rc and at r 
respectively, & and b are the magnetic curvatures there. In 
the case of uniform magnetic field we can put b = 12,. 

It is easy to rewrite them for the components ((7<,, Q,,) for q 
and @,, p., p,) for p. The set of coupled equations Eqs. (l)- 
(10) can only be solved numerically for the purpose of study 
on the optical properties. 

2.3. Non-Uniform Maperic Field 

In the case of a non-uniform magnetic field, simple 
analytical solution is no more possible. However. Eqs.(l)- 
(10) do not assume a uniform magnetic field. If the electric 
and magnetic distributions are given, i. e.. the functions K, F, 
G and b as functions of space, we can solve for e, n, t and r, 
simultaneously, which determines the reference trajectory. 
Eqs.( l)-(3) guarantee still in this case the orthogonality of the 
vectors e, it and t. Once the central trajectory is fixed, we can 
integrate Eqs.(4)-( 10) to get the optical properties. It may be 
more convenient, however, to start from the uniform-field 
approximation and to proceed to necessary modification 
introduced by the non-uniformity. 

3. ELEXTRIC POTENTIAL AND THE LAPLACE 
EQUATION 

In a curvilinear coordinate the Laplace equation takes 
somewhat complicated form due to the twist of the reference 
curve, the central orbit of the ions in this case[4]. The 
electric potential $J is a function of q and s. The components 
of the electric field E is given by 

E.e= -?I!! 
*e, 

E.n2!!2 
a,l, 

ad 
E t = - a,4 

=(e’. 4(%& 
?!L,,i!t ?P 

n 

*)+ as 

c 

The Laplace equation has a form 

The solution can IX expanded into a power series of q in 
the plane containing q. Taking the polar coordinates, q and 6, 
we have 

4=z CT 
n..?o 

f#~~ =Real {a, (s)q”ein8 + 
F n 

cnkm (s)qkeim8 I, 

ma.2 

0, and c.km are complex functions of s, and m is an odd or 
even non-negative integer. Note that the factor qneine is a 
solution of the Laplaw equation when the reference curve is a 
straight line. The coefficient a, must be independent of s 
since the electric field is perpendicular to C and a, is 
determined by K and F. The other coefficients a, introducing 



862 

the 2n-pole dcctric potential are free parameters for the shape 
of the inflector electrodes. For example, the electric focusing 
by quadratic electrode surfaces and the effects of disturbance of 
the electric field at the edges of the electrodes can be studied 
by adding appropriate higher order terms through a,. 

The effects of twist of the reference curve appear in the 
COrreCtiOn tt:mIS containing c,&, which can be Uniquely 
determined from a, . The magnitude of c& is of the order of 
the k-th power of the curvature of the reference curve. The 
series converges rapidly if q is much smaller than the radius of 
curvature. A computer program has been written to calculate 
c,+ symbobcally starting from a given a, . The truncation 
error in this expansion can be estimated as the space charge 
appearing in the corresponding Poisson equation. 

Conversely the space charge effects due to the beam can be 
simulated by adding a potential which vanishes on the 
electrode surfaces, when the beam intensity through the 
inflector becomes large. 

4. NUMERICAL EXAMPLES 

As numerical examples, we have studied an inflector for 
the SF cyclotron at the Institute for Nuclear Study, University 
of Tokyo, whose extraction radius is 73 cm. If we use a 
constant orbit with 250 turns for acceleration, all parameters 
except the ratio of the injection voltage of the ions to the dee 
voltage are fixed for centering the cyclotron orbit. Since the 
dee voltage i,s 2060 kV in our case, we took the ratio to be 
0.3. For simplicity and comparison, we employed the 
electrodes 10 mm wide with and without tilt. The magnetic 
and electric radii of curvature are 17.9 mm and 41.3 mm, 
respectively and K,, = OX, for the tilt. 

It should Ihe noted that the electrode surfaces are no more 
flat due to the twist of the reference curve. At the edges, the 
shift of the surfaces introduced by the twist amounts to about 
2 mm, which is not negligible compared with the gap about 5 
mm. The error introduced by truncating the terms higher than 
the fifth order in the expansion was equivalent to the space 
charge due to a beam of about 100 uA of IO-keV Arl@+. 
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Figure 1. Transmission efficiency vs the electrode gap. 

Figure 1 shows the transmission efficiency of a beam as a 
function of the gap between the electrodes. The top two 
curves are for the tilted cases and the bottom two, for the 

untilted (open circles: without quadrupole field, closed circles: 
with quadrupole field). The beam was assumed to have a 
waist with a diameter 5 mm at the entrance and an emittance 
of 200 mm.mrad. The position and angle of the ions in the 
initial beam were assumed not to be correlated by the 
longitudinal magnetic field of the cyclotron. If a correlated 
beam with the same size was assumed, the efficiency was 
found to be much higher. The transmission efficiency turned 
out to be much lower, about half, than that calculated with a 
potential without the correction for the twist. It is natural 
that the correction terms strongly affect the transmission since 
the magnetic radius of curvature is not huge enough compared 
with the deviation of the ions from the reference curve. 

The higher efficiency for the tilted case is considered to 
arise from the shorter path length, 46.1 mm, through the 
inflector compared to that of the untilted case, 64.1 mm. In 
both cases, addition of a quadrupole electric potential of a 
form a(n2-yz) + bxy with a set of parameters, a = b = 0.2 K,2 
results in better transmission by about 20 %. 

5. DISCUSSIONS 

The simple analytical solution of the central orbit of a 
spiral inflector has been shown to be useful and have a 
possibility not studied so far. The solution is applicable for 
the spiral infleetors for the cyclotrons with various sizes. It 
offers a transparent method for design. 

We have formulated a method to analyze the ion-optical 
properties of a spiral inflector by using an electric potential. 
The previous works [l-3] have devised to expand the electric 
field around the central trajectory instead of the potential. 
Using a potential instead of the electric field brings about an 
advantage that the electric field thus obtained can be expanded 
around the central trajectory together with the method of 
expansion described in Sec. 3. This method makes it possible 
to obtain the electric potential with enough accuracy without 
using a 3-dimensional computer code for calculating the 
electric field. 

With advent of numerically controlled machining of the 
electrode surfaces, there arise possibilities to use more 
complicated surfaces to get better optical properties. As is 
seen from the formulae presented in this paper, there still 
remains much freedom to choose the electric potential around 
the central trajectory. The formalism developed here will be 
useful in those cases. 
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