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By using the recently proposed thermal waue model for rel- 
atiaistic chaipged particle beam propagation a new approach 
for studying sonle nonlinear effects in accelerator niachines 
is developed. By taking into account the interaction of a 
relativistic charged particle bunch with both the RF and 
the self-induced wakes, and neglecting the synchrotron ra- 
diation enCssion,we show that the longitudinal dynanlics 
is governed by a nonlinear SchrGdinger equation for a COIW 

plex wave function whose squared nlodulus is proportional 
to the longitudinal bunch density. This wave model, for 
which the diffraction parameter is represented here by the 
longitudinal enlittauce, is suitable to give a new descrip- 
tion for the bunch instability and capable of reproducing 
both the well known coherent instability (stability) condi- 
tions and th’e well known longitudinal envelope equations 
(space charga- effect included). Furthermore, we show that, 
in the case of RF 08, soliton-like solution for the density 
profile are possible when the bunch propagates under the 
action of the self force. This nlodel nlight deserve attention 
in understanding the bunch lengthening (shortening). 

1 INTRODUCTION 

Recently a tltermai wave modelfor relativistic charged par- 
ticle beam p;popagation., useful for a quantum-like descrip- 
tion of the optics and the dynamics of charged particle 
beanls, has been proposed in literature [l] and success- 
fully applied to the transverse dynanlics in both conven- 
tional accelerating machines and new plasma-based par- 
ticle accelerator schemes [2]. In particular, this model 
seclns suitablr to describe both the spherical aberrations 
for the lunlinosity estimates at the interaction point when 
a quadrupolar-like lens with octupolar deviations is taken 
for the final focusing stage in linear colliders [3], and the 
self-consistent nonlinear interaction between the plasma 
wake field and the driving relativistic electron (positron) 
beam [2]. 
In this paper, in analogy to the transverse beans dynalnics 
description given in the previous works [I]-[3], we suggest 
a novel approach to study the nonlinear longitudinal beam 
dynanlics in particle accelerator. To this end, in Section 2 
we propose a sort of nonlinear Schrsdinger (NLS) equation 
for a conlplex wave function q, the so called beam warle 
function (bwf), whose squared nlodulus gives the longitu- 
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dinal density profile of the beam. In Section 3 an analysis 
of both coherent instability (stability) and soliton forma- 
tion is developed within the contex of the thernial wave 
nlodel which is c.apable of reproducing the well known co- 
herent instability criterion [4], showing that the latter is 
fully similar to the well known criterion of modulational in- 
alabilityoccuring when an e.m. bunch is travelling through 
a nonlinear medium. In Section 4, by using the thermal 
wave model, we are able of reproduce the well known cnvc- 
lope equation, which holds by taking into account both the 
RF field (potential well) and self interaction (wake fields). 
Section 5 concerns the conlrnents and suninlarixcs the con- 
clusions. 

2 WAVE EQUATION FOR THE 
LONGITUDINAL BEAM MOTION 

It is well known that the longitudinal nlotion of a single 
particle within a stationary bunc.h travelling with longi- 
tudinal velocity PC in a circular accelerating nlachine is 
described, neglecting radiation damping, by the following 
motion equation [5]: 

d’e 

dt2 
+ “f, = $!2!2 

m 

where r is the longitudinal particle coordinate with resprrt 
to the synchronous one, w, is the synchrotron angular fre- 
quency, rj = Q - * is the conlnlon phase-slip factor (CX 

is the nlonlentunl compaction and 7 = l/,,m is the 
usual relativistic ganllna factor), F is t.he self force, and 
m is the partic.le rest nlass. The tern1 -WAS accounts for 
the linear longitudinal force produced by the RF cavity 
(potential well) and zF(r, t) is due to the presence of ad- 
ditional effects produced by the bunch itself (longitudinal 
wake field). Let us denote with h the longitudinal IIIO- 

nlentunl spread with respect to t II c synchronous particle 
and define s = ct, where c is the speed light. Thus, ? and 

9, are related by the following equation (61: 

dx AP -7) - 
z= p (2) 

Consequently, by introducing the wake potential W(r, s) 
by: 

F i?W - = -- 
P 8X 

(3) 



763 

with q the particle charge, and using the first integral of 
(1) (energy equation) and (2), we obtain the following di- 
mensionless Hamiltonian: 

+ ;Kz’ + ‘7% (4) 

where K E wf/c2 is the RF focusing strength. Note that 
here $ plays the role of an e&live mass. In order to find 
au equation which describes the longitudinal evolution of 
the beam taking into account its thernlal spreading (longi- 
tudinal emittauce) while it interacts with the surrounding 
medium (potential well and wake fields), we put, according 
to the thermal wove model for wldivisiic charged particle 
beam, the following quantum-like correspondence rules: 

AP a a 
- +pz --if--- 
P dX 

H -3trir-- 
83 

(5) 

where e is the longitudinal beam eniittance. So that, 
by considering (4) and (5), the following SchrGdinger-like 
equation for the (5eam slave function (bwf) q can be as- 
sumed 

a* 
iez = BP, 

P 
-7f = 2(1/q2) 

+ ;Kr’ + 115 (6) 

namely: 

as 2 aas if- 1 ---- 
as 2( :1/+) 8x2 

+ ;Kz% + $$ (7) 

The (7) describes. the longitudinal beam dynamics with 
the followiug meaning of 9. If X(x, s) is the longitudinal 
beam density (number of particles per unit longitudinal 
length) and N is the total number of particles, thus: 

X(;r,s) = NIJl(x,.# 

so that the normalieation condition is provided: 

(8) 

I = p(x,s)la dx = 1. (9) J-x 

This way ]q]” gives the longitudinal beam density pro- 
file. In general, the wake potential is function of ]412, 
W(z, s) = W(]~k(z, s)12), so this describes the longitudi- 
nal nonlinear beam dynamics in terms of an appropriate 
nonlinear Schrodinger (NLS) equation. 

3 COLLECTIVE EFFECTS 

In this section we develop, within the framework of the 
thermal wave model , an analysis of some collective effects 
occuring when the bunch interacts with the surrounding 
medium. To this end, we consider the special case of RF 
cavity ofi and ta.ke into account both the space charge 
effect and a purely inductive coupling impedance. Since 
in this hypothesis the self force is proportional to $$ [4], 
the wake potential is: 

W(z,s) = -qNRpc -.-%!- - 
RPcr= 

where go is the well known coupling c.oeficient, Z’ is lon- 
gitudinal coupling impedance per unit length divided by 
the mode number 71, and R is the averaged orbit radius of 
the synchronous particle. Consequently, the (7) bec.omes: 

. @P l aq2 a’* *(r-.-- = _-- 
83 2 ax2 

- qyNralQ/Q (11) 

where we have put (cgs units): 

x = RPc [* - IZ’lnl] and PI, is the classical radius 

of the particle. Note that, (11) is formally identical to the 
cubic NLS equation which describes the propagation of an 
electromagnetic (e.m.) pulse through a nonlinear medium 
in paraxial approximation [7],[8]. In this analogy f plays 
the role of the diffraction parameter (the inverse of the 
wavenumber), s corrisponds to the time and --~xT!, 191’ 
corrisponds to a nonlinear refractive index. So that, an 
analysis of the bunch instability (stability) can be made in 
complete analogy to the electromagnetic one. 

3.1 Stability criterion 

For NLS equation of the form 

ig + pg + Qlq2* = 0 (12) 

a sniall perturbation is stable (unstable) if the following 
condition (Lighthill criterion) is satisfied [7]: 

PQ < 0 (PQ > 0). (13) 

Consequently, for the (11) we have coherent stabilit,y (in- 
stability) with respect to a small density perturbation of 
the bunch if 

x77 < 0 oi’7 > 0) (14) 

(here P = $ and Q = e). Thus, Eq. (14) inmiedi- 
ately recovers the coherent stability (instability) criterion 
well known in the conventional theory [4]: (1) if the total 
longitudinal coupling impedance is capacitive (x: > 0), the 
system is stable (unstable) only if it stays below (above) 
the transition energy, namely q < 0 (q > 0); (2) if the total 
longitudinal coupling impedance is capacitive (A < 0), the 
system is stable (unstable) only if it stays below (above) 
the transition energy, namely 0 > 0 (77 < 0). 

3.2 Solitons 

A solitary solution of Eq. (11) is found by looking for a 
solution of a relativistic (PO zz 1) envelope form: 

q(x, s) =: G(x - ,&s)eikq’z-aW’ir (151 

with ko, and wo real numbers. Thus, according to the gen- 
eral theory of NLS equation [7], the following soliton-like 
solution for the beam density (X =I NGa), which satisfies 
(Q), is possible under the condition 77~ > 0: 

i@Xrb sech2 X(x, 3) = - 
4c=q 

$(x - &s)] (16) 

where iEo =I ,Bo/(cv2) and we = (eqa/2)ki - NzX2rz/( 16r3). 



4 ENVELOPE EQUATIONS 

III this Section we find au aberrationless solution of (7) 
with the potential (10) f o owing the standard techniques II 
of nonliuealr e.m. wave optics [8]. This allows us to write 
an cnvclop~~ equation for the longitudinal motion taking 
into account both the RF fields and the self interaction. 
To this Cud, we look for a solution of (7) in the form: 

0 -* 
a(r,3) = ;- e’@(=‘rl (17) 

where the eikoual has been supposed as: 

8(x,3) = 
22 

- f #(3). 
w43) 

By substituting (17) and (18), separating the real part 
from the imaginary oue, and expanding ]q]’ up to the 
second-power of z (aberrationless approximation) we get 
a coupled equation system for the effective particle bunch 
width a(s), the curvature radius of the wavefront p(s), and 
the phase d(3). Therefore, by solving for a we obtaiu the 
following envelope equation: 

1 =o (19) 

where { =: 9. We first observe that in the limit of 

negligible self interaction (E = 0), (19) gives the envelope 
equatiou fez the synchrotron motion (harmonic oscillator 
solutious for the bwf). III this case, by using the puan- 
turn uncertainty principle related to Eq. (7), the following 
relationship cau be proved [l]: c~~(~sr,) = c/Z = constant, 
where LT,) is the bunch length and up,) is the the quantum 
expectation value of P at the equilibrium state. There- 
fore, by inlposing d’a/ds’ = 0 in Eq. (IQ), we easily re- 
cover the well known relationship between rrg and a,(? [9]: 

00 = (IVIIJTT)~p, = (Rlvllh) CT~,(~, where h is the harmonic 
number. 
Furthermore, by retaining the self interaction term (< # 0) 
in (19) we get, within the equilibrium condition, the fol- 

lowing algebraic expression for cT: f14 - qbc=a - u; = 0, 

which in the special case of parabolic density profile recov- 
ers the well known similar expression given in [lo], used to 
try an expla.nation of the potentiul vlell bunch [enghlening. 

5 CONCLUDING REMARKS 

In this paper we have showu possible a novel approach to 
the nonlinear longitudinal dynamics of a relativistic par- 
ticle bunch in circular accelerating machines within the 
contex of the recently proposed thermal wave model for 
relativistic charged purtzcle beam propagation [I]. Neglect- 
ing the radiation damping, we have shown that the non- 
linear interaction between the bunch and the surrondings 
(potential well and wake fields) is governed by an appro- 
priated NLS equation (equation (7)), fully similar to that 
holds for the propagation of an em. bunch in a nonlin- 
ear nledium in paraxial approximation [8]. By using this 

similarity we have recovered, when the RF is of the well 
known condition for the coherent instability (stability) [4]. 
We have pointed out that: first, in the em. analogy, these 
conditions correspond to the Lighthill criterion (modula- 
tional instability [7],[8]); second, the density can assullle 
a soliton-like profile under the condition 9,~ > 0. Physi- 
cally, a sort of competition bctwceu the diffiuctiue energy 
(i.e. thermal energy) and the &lf energy is established. We 
have instability when the self energy term overcomes the 
diffraction one. According to Section 3.2 condition 7~ > 0 
suggests that soliton formation would be the natural cvo- 
lution of the initial beam density modulation toward a self 
bunching which asimptotically gives a soliton-like envelope 
wave train. Furthermore, by taking into account both the 
RF and the self fields, the averaged-quantity description 
has allowed us to recover the well known envelope cqua- 
tiou for the longitudinal motion [lo]. 
Let us suppose that is possible to expand the wake poteu- 
tial Mi(z, J) in powers of 1: up to an order n > 2, thus 
aberrations are introduc.ed in terms of an auharn~onic po- 
tential: the odd (even) powers are related to a resistive 
(reactive) coutributiou to the coupling impedance. If the 
initial bunch density profile is Gaussian, these anharmonic 
terms introduce a distortion which results in a modifica- 
tion of the space-distribution of the particles in such a 
way to produce, after many turns in the machine, a bunch 
length modification. In a forthcoming paper we discuss 
more carefully this effect by putting in (7) au expansion 
of W(z, 3) up to 24. This way we try a realistic wa17e 
interpretation of the anonzulow bunch lengthening. 
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