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Abstract 

The Hamiltonian governing the on-momentum particle 
motion in accelerator magnetic field with arbitrary non- 
linearity is derived in the frames of the second-order ap- 
proximation of the averaging technique. As an example 
the effects oil sextupolar field components on betatron os- 
cillations are analyzed. The motion in the vicinity of the 
coupling resonance 2Qy - ZQz = 0 is investigated. The an- 
alytical results are shown to have a good agreement with 
tracking simulation in the UNK superconducting acceler- 
ator. 

1 INTRODUCTION 

To compens,ate chromaticity in a high energy supercon- 
ducting accelerator magnetic fields having a higher sex- 
tupolar nonlinearity are required. The first-order approxi- 
mation of the averaging method typically used to calculate 
similar systems proves to be insufficient for this purpose. 
Among the effects manifesting themselves in the second- 
order approximation, the most noticeable are the following 
ones [l]: the dependence of the betatron oscillation tunes 

Q =,r on amplitudes; the fourth-order resonances, one of 
them is the coupling resonance 2Qy - 2Qz = 0. The pres- 
ence of this resonance the work treats can bring about cer- 
tain difficulties during slow extraction of the beam. Such 
effects may #also occur due to a relatively large sextupo- 
lar nonlinearity in superconducting dipoles produced by 
persistent currents at low levels of magnetic field H. The 
above effects have to be taken into account when formulat- 
ing the tolerarble value of sextupolar nonlinearity in dipoles 
and choosing the structure of the chromaticity correction 
system [2]. 

2 IEQUATIONS OF MOTION 

In a superconducting high energy accelerator the magnet 
length is essentially larger than the inner aperture. There- 
fore, the magnetic field imperfections may be treated as 
plane, i.e. h” = (h,, hv). In this case h,,, are expressed in 
terms of the longitudinal vector potential 

A, = 
AH,, + iAil, 

2(n + 1) rn 
(z + iy)n+’ + C.C. , 

where AH,,, Ag,, are normal end skew components of 
the n-th power nonlinearity, respectively; r is the refer- 
ence radius accepted to be 35mm which coincides with the 

halfwidth of the vacuum chamber to be used in the UNK 
superconducting accelerator. 

The equations of the on-momentum particle motion in 
the presence of the nonlinear magnetic field are 

(‘3 +gc( = --&$$y 

where C is used as general transverse coordinate for both + 
and y; R, and R are, respec.tively, the average radius and 
the curvature radius of the referenc.e orbit in the magnetic 
field H; ‘prime’ denotes the differentiation with respect 
to the generalieed asimuth 8 associated with the longitu- 
dinal coordinate s by the relation 0 = s/R,. The solution 
of system 1 is sought in the form 

c= q(o< +qfJ; 1 C’ = cq’p~ + a;(pT’ , (2) 

where ‘p( = ~~exp(i~c(tJ)) is Floquet’s function 
with the normalization p<pf’ - v;rp; = -2i, /?c is the 
betatron amplitude function and pc = Q,LJ + xc is the 
phase of unperturbed betatron oscillation with periodic 
part x((6). Then from Eqs.l,2 it follows that 

iR2 dA a’ = 02 c 2RH a( ‘p; . 

To describe the perturbed motion it is more convenient to 
use real variables rc, ;i< instead of complex a; and a; 

q = fqZZZ I;1’2exp(iij~) , (4) 

where TC 1’2 is the amplitude of oscillation referred to r at 
the point with 0~ = &as. For the UNK it is taken to 
be A,,,, = 152 m coinciding with the maximum of PC in a 
regular cell [3]. Fr om Eqs.3,4 we obtain the equations for 
(Fc, ;ic) in the canonical form 

8D 
Tp = ---=-, 

dD 

8% 
q+,i 

c 

D = ‘f;;$ A,((‘(f,fj,B),B) 

Presenting each of variables (&, 6~) as the sum of a part 
(It, 17~) varying slowly, and a small addition oscillating 

fad: q = I( + AI, , ?c = 77~ + AT]C , we obtain from 
Eq.5 by means of the averaging method [l, 41: 

(7) 
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In the first and second approximations of this method the where: UJ = nv - q2 + arg(r)/2, 6 = Qy - Qz 
Hamiltonians DC”) have the form, respectively, ,T c+ 

D(l) = < 13 >, (8) 
azz = 

II 
wws9Nq3,o) + 3Jf(l,O))d@d9 

0 0 

D(a) = < jp>+fc< aI)!!.!?-?!!?>, 

7 + 

aq aI< 81, alli 
QYY = 

/I 
r,(@)Ya(wqlq2, + 4K(l,O) 

0 0 
=fY 

-K(-l,a))d@dfi 

where in Eq.6 for D the variables &, ri, are changed by 
7 T (L,y= 

I~,v(. Since D(I~,v(,~) = Cjoj(‘~,‘7C)exp(‘vj’), the 2 JJ ww5(mql,2) + q-1,2)) 
o o 

operators < D > and 5 denote: -2Y@)~(IJql~~~29 

< D > = x D,,,exp(iv,B), 1~~1 < 1 ; (9) ’ = o o JJ T r[Y2(e)Ya(6)(E(l,o) + q-1,2)) - 

m 

i?(Ic,q,@) = x $exP(iv,B) 
j#m ’ 

Yl(qY,(q(ql,,) - q-lJ))P + 

(10) ~~(8)1’1(9)(E(l,o) - +,0))/41e’~(~)d@d79 

=: - I (D(Ic,q,+ < D(Ic,t7(,9) >)dti- E(n,m) = - 
exp[i(nF, + mF,)] E(,,,) + C.C. 

7 sin[(v,, + m~ly+)/2] ’ 
5 n,m) = 2 

In the case of < D >= 0 the expression for DC’) may be 
written as 

Fc = ~((0) - ~((9) + pcr/2sgn(9 - 0) ; r is the common 

aDt@) aD(4 D(‘) = ; x < a( / a( L( (8, wo >r (11) 
period of the accelerator lattice and the sextupolar nonlin- 
earity distribution along the accelerator; /A{~ is the phase 

c=z,y 

.Lc (0,6) = iaepLp(i/.L< (0) - @c(0)) - c.c.) . 

advance of oscillations per period T; f = 2txy - x2). 

In Eq.12 the parameter ]r] characterizes the strength of 

4&3,,2 the difference resonance, and the coefficients a define the 
nonlinear tune shifts. Since DC’) depends on (ny - qZ), 

We use the above procedure of obtaining the second- 
order approximation when there is only normal sextupolar 

then Iy + I, =const, the sum of the squared normalized 
amplitudes is c.onserved and, in the worst case, the energy 

nonlinearity in an accelerator. exchange between two directions of betatron oscillations 
may only take place. 

3 INFLCJENCE OF SEXTUPOLAR 
NONLINEARITY 4 COUPLING RESONANCE 

According to Eqs.8,9 in the first approximation the nonlin- 
earity AH2 can excite first- and third-order resonances of 
betatron oscillations: QZ = k, 2QykQZ = k, 3Qz = k. For 
a sufficiently large distance of the working point (QZ, Qr) 
from these resonances (when one may neglect their influ- 
ence on It, J)C) the equation < D >= 0 will be satisfied [5]. 

As seen from Eq.11, the averaged over 6 value con- 
tains, alongside with the constant constituent, also the 
terms with the frequencies vj which equal 4Qz,y - k, 

2Qy f- 2Q, - k, 2Qcy - k. This means that the sex- 
tupolar nonlinearity can excite the second- and fourth- 
order resonances whose strength is - (AH,)‘. In the 
UNK the sextupolar magnetic field of the chromaticity cor- 
rection system and the systematic sextupolar nonlinearity 
in regular cells dipoles excite these resonances which are 
far from the wortig point. Therefore, one may neglect 
their effect, with the exception of the coupling resonance 
2Qy - 2QZ = 0 only near which the working point is lo- 
cated. In this case: 

DC’) = ?I: +azyIzIy + ?I; 

+WMy cos(2w) , (12) 

To study the resonance let us introduce new variables 
I=I,+I,,~=LIJ~+T]~,J=I~-IZ,which,inaccordance 
with Eqs.7,12, satisfy the equations 

I’= -4G/av, d = ac+x (13) 
J’ = -aG/Bw , d = aG/OJ 

G = &,I2 + (6 + XII)J + AZ 5’ + Irl(I” - J2) ~42~~) 

Xi = [CYyy + 2(1 - i)a,, + (-l)‘a,,]/[3+ (-l)$ 

The Hamiltonian G which does not depend explicitly on 0 
and the quantity I are invariants of the motion. Therefore, 
for any fixed I one can calculate phase trajectories in the 
plane (J, zu) and consequently define the motion complete- 
ly in the frames of the approximation involved. 

The existence of closed phase trajectories in the plane 
(J,zu) and large modulation of amplitudes are due to the 
fixed points in this phase plane at which simultaneous- 
ly J’ = 0 and 1~’ = 0. It is seen from Eqs.13 that the 
largest modulation occurs in the resonance centre when 
the fixed points he on the line J = 0. The location of 
this centre in the betatron tune plane is defined by the 
equation k--XII and, consequently, will be different for 
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tht 

I 

: lattice function 
fm 1 def 

11.828 5.912 
-4.244 1.225 
0.746 0.114 
5.911 11.826 
1.224 -4.243 
0.834 0.025 
2.332 1 1.293 

particles with unequal I. With the fulfillment of the con- 
dition 16 + XIII 2 2( [X21+ Irl)l, all the fixed points vanish. 

To control the obtained result the simplest case has been 
considered: there is AH, # 0 only in the correctors of the 
chromaticity correction system. Such a case is possible at 
the highest energy of a superconducting accelerator when 
the sextupolatr nonlinearity in dipoles is small. In the UNK 
sextupolar correctors are located in all of 160 regular cells 
near the focusing and defocusing quadrupoles. The val- 
ues of the lattice functions in the centres of the correctors 
at Qz = 36.678 and Qy = 36.696 are presented in Ta- 
ble 1, where pz,Y are measured off the beginning of a cell. 
The values (AHs~/HR),~,~~, = (1.376, -2.483) x 10e5 
in which I is the effective correctors length introduce the 
addition to the accelerator chromaticity A&,Y = 70. The 
values of parameters a--y calculated for this case are pre- 
sented in Table 2. 

T#able 2: Values of parameters al. 
a,,103 1 ~yy103 1 azy103 1 lr1103 1 q(r) 
-1.436 / 0.862 1 -9.495 1 3.890 1 2.922 

Fig.1 shows the phase trajectories G =const in the plane 
(J/I,w) at 6 = 0. Th ese results have been verified by 
the tracking simulations according to the following algo- 
rithm: the motion between the correctors has been cal- 
culated via the standard matrix technique; the correctors 
were considered to be point-like, i.e. on passing a cor- 
rector a particle does not change C, while the quantity 
dC/de gets a kick; slowly varying amplitudes and phases 
have been determined approximately according to Eqs.2,4 
1i 2: Ic(C,C’,8), qc ‘v ;ic(C,C’,tJ). The results of these 
tracking simulations at I = 0.33, i.e. rl’l’ = 20 mm, and 
the same strengths of the correctors are presented by dots 
in Fig.1. The distance between the neighboring points cor- 
responds to 1.0 turns in the accelerator. The phase trajec- 
tories obtained by the averaging method and the tracking 
simulations have a sufficiently good coincidence. Small de- 
flectians of the points from the theoretical trajectories do 
not bring about a systematic change in the total oscillation 
energy, i.e. in the value of I. This is illustrated in Fig.2 
which shows the behaviour of lz,y calculated by means of 
the tracking simulations along the trajectories marked in 
Fig.1. 

5 CONCLUSION 

It follows from the form of Eq.12 for the Hamiltonian that 
a normal sextupolar nonlinearity in the second-order ap- 
proximation of the averaging method produces the same 
effects on betatron oscillations as a normal octupolar non- 
linearity does in the first-order one. This allows one to 
use a special octupolar correction system [6] for the com- 
pensation of the effects proportional to (AH,/H)‘, which 
may be appreciable. 

The authors are grateful to Prof. K.P. Mysnikov for 
many helpful discussions and suggestions. 
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