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Treatment of Nonlinearities in Achromatic Trajectory Corrections for Future Linacs 
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Abstract 
The control of transverse emittance blow-up is quite a 

challenging issue for the next generation of linear colliders. 
To deal with this problem, a ‘dispersion-free algorithm has 
been proposed at SLAC in order to optimize the beam trajec- 
tory in a suitable momentum range. The method requires a 
good knowledge of the machine model at different momenta 
and the question is then to determine the coefficients of trans- 
fer matrices which are strongly nonlinear in Ap/po, It is 
shown that the function to be minimized can be expressed as 
a series of n + 1 tenns; the fit one describes the contribution 
of the trajectory excursions at nominal momentum, the n con- 
secutive terms being the influence of dispersive effects to in- 
creasing orders in momentum. The application of the method 
is also discussed and an example to second order is given in 
the case of the CLIC main linac. 

1. LNTRoDuC~~N 

In future linear colliders, transverse wake fields and disper- 
sive errors will dilute the transverse emittances. These pcrtur- 
bations are due to trajectory offsets in both the magnets and the 
accelerating structures that are typically misaligned. In this 
paper, the study of the dispersive errors and their compensation 
is emphasized. When the beam travels off-axis in a quadrupolc, 
particles with different energies are deflected differently. The 
dispersion-free algorithm, proposed at SLAC [I] and shown to 
be effective in the case of the NLC design, deals with this 
question. Here this method is investigated on a general basis 
and applied to CLIC for different sets of parameters. 

The presence of trajectory deviations and trajectory diffcr- 
ences in the function to minimize [1] gives basically two han- 
dles to the correction. To keep the generality and to take into 
account the nonlineaities with momenWrn of the transfer-ma- 
trix coefficients (21, the second contribution that includes dis- 
persive (or chromatic) effects can be split into terms to increas- 
ing order in momentum. The relative importance of the trajec- 
tory and of the dispersive effects as well as the relative impact 
of the different chromatic terms can then be studied, and the 
dependence of this relative importance (and unavoidable tra- 
jectory-dispersion correlation) on the hypothesis made on pa- 
mmcters and misalignments can be analysed. 

2. ACHROMATIC CORREC~ON TO HIGHER ORDERS 

The quantities of interest are the measured trajectory dis- 
tortions xj and trajectory differences AXj taken for different 
energy excursions 6 = Ap/po. If tj is the actual trajectory, the 
quantities Xj and “*(j become 

Xj = tj + {j - bj 

AXj=Xj(6)--Xj=tj(6)-tj+\j(6)-{j 
(1) 

in presence of random position-monitor precision erron ~j (of 
r.m.s. value 06) and random position-monitor misalignments 
bj (of r.m.s. value 0tJ. An ‘achromatic’ correction should by 
definition reduce both Xj and ~j, i.e. the trajectory and the 
dispersion effects. This is typically achieved by applying 
dipole kicks Si along the linac or by moving the quadrupoles 
of the lattice transversely (which is equivalent). Therefore, 
the next important quantities are the calculated trajectory dis- 
tortions Xj and trajectory differences AXj due to kicks 6, 
(downs- projection, i.e. j > i). 

Xj = C Rlz(i, j,O)19i Pa) 
icj 

hxj=Xj(G)-Xj 

= C [ Rlz(i, ii?)& - R~2(i,j,0)]di Ph) 
icj 

where R,, are the transfer matrix elements transforming a de- 
flection 6i into an excursion Xj (at j > i), either on-momentum 
(6 = 0) or off-momentum (6 f 0). After correction, the sum of 
the quantities (1) and (2) must be minimum, i.e. Xj + XI-j and Axj 
+ hxj. It is important to note at this point that nonlmearities 
with momentum develop in R,,(i, j, 6) as the separation (j - i) 
increases [2]. These nonlinear variations are mainly quadratic 
with F, when j - i 7: 70 and 6 remains between f 4% about, hut 
even wilder outside. The trajectory variations Axj with 6 arc 
also not necessarily always linear. Hence, in order to include 
higher orders in the model for study purposes, the quantities 
~j and AXj have to bc developed in 6. A first step gives: 

r;l-T;= 1- 6 + 6”-...+ (-1)“6” 

Rtz(i, j,S) - Rtz(i, j,O) = c ci 6” (31) 
m 

with R12(S)h - R12(0) 

= &([R,dS) -R,z(())] - SRI&)] (Xl) 

forgetting in m. (3b) the indices i, j for simplicity. All the co- 
efficicnts c,; can be computed by simulation. Assuming that 
AXj development is deduced from mea..urements and intro- 
ducing Eqs. (3) into Eq. (2b), one gets 

%iF Cfii ‘&$j” = Cs”Cfj$; = x:A;j1&“. (4) 
i<j n n i ” 



730 

Equations (4) show that both quantities AXj and AXj con 
be developed to increasing orders in 6 and that, for each 
order, the sum of the corresponding terms can be retained for 
a minimization. One can then imagine a correction that mini- 
mizes, besides the nominal trajectory, the successive disper- 
sive terms, i.e. the linear dispersion, the quadratic chromatic 
trajectory d’ependence, and so on to higher orders. This con- 
sists in minimizing an error function db that contains a 
quadratic sum for the trajectory and each dispersive term 

Wo(Xj + Xj)2 + Cw,82n(ai + Ai (5) 
nkl 

where w. and w, are weights and N the total number of mea- 
surement points. It is natural to choose weights inversely pro- 
portional to the measurement errors [ 11. In this case, w6 l is 
equal to the: quadratic sum of the r.m.s. precision errors and 
misalignment errors, while w;;’ is given by twice the preci- 
sion errors (in a trajectory difference, misalignment contribu- 
tions cancel). But appropriate weights can also be introduced 
to better investigate the relative importance of each term. 
Taking for 6 the particular value S, used in the trajectory dif- 
ference measurements, the. function @ becomes 

r/ \2 / \21 

@=$ L ‘j+FRl:“iJ + Jai+F($iJ (6) 

* j=l CT: +a; n21 2052 /s;* 

1 i 
The minimum of Cg is obtained by looking for the kicks 6, 

that bring to zero the partial derivatives of @ with respect to 
6i. This is equivalent to saying that the following linear sys- 
tem must be satisfied (index i varying from 1 to N): 

(7) 

where j,,, is the maximum of i + 1 and k + 1. Equations (7) 
have to be s3lved for the iq. In the present studies, they have 
been coded up to second order in 6 in Eq. (4) (n I 2), since 
the contributions to the dispersion are expected to decrease 
with this order. 

13. APPLICATION OF THE METHOD 

To order n in 6, n coefficients <and Aicome in the devel- 
opment (4) of h”j and ~j; these coefficients are determined 
by the measurement of the trajectory and the calculation of 
the transfer matrix coefficients R,, (i, j) at the nominal mo- 
mentum po and for n different values of the energy excursion 
6. Application to second order therefore requires one to know 
the trajectory and transfer coefficients for two diffetcnt values 
of 6, which WI be chosen symmetrically around po. The exer- 
cise was carried out in the case of the CLlC main linac stnc- 
ture. The method for extracting the necessary parameters 

using the same tracking program with different initial condi- 
tions is described elsewhere [33. Only the vertical plane is 
considered here; this is the most critical one as far as trans- 
verse blow-up is concerned owing to the emittance ratio 
(> 10) expected in CLIC. Therefore, only QDs of the 90’ 
FODO lattice are selected far kick applications to correct the 
vertical trajectory and for pick-up locations to measure it. 

T%e behaviour of the R,, (i, j) coefficients versus S in the 
case of the CLIC structure has already been presented [2]. For 
a given reference quadrupole i their parabolic shape holds for 
roughly 26 cells (52 quadrupoles) as long as S is limited to 
within f3.58; these values have been kept and the process 
applied on bins of 60 quadrupoles with an overlap of 10 
quadrupoles between consecutive bins. In principle, five itera- 
tions are applied on each bin for a better convergence. CLIC 
(option 1) with a final energy of 250 GeV, a linac length of 
3500 m, and 3.50 quadrupoles is used. 

The algorithm efficiency was considered for various sets 
of parameters: initial emiuance, alignment erron of lattice el- 
ements (quadrupoles, pick-ups), the main appreciation critcri- 
on being the relative emittance blow-up at the linac end. 

Another key parameter is the relative contribution 
(weight) of the two terms in Eq. (5). describing the basic tra- 
jectory and the dispersive effects. as well as the relative im- 
pact of the linear and quadratic terms in the latter. 

4. EXAMPLES 

Quadrupoles are supposed to be misaligned within an 
r.m.s. error of 5 pm. This value is realistic for CLIC and 
maintains the beam trajectory before correction, and hence 
wake fields, at a reasonable level for the purpose of this 
study. To reduce the tracking time, RF cavities are neither cut 
in sections nor misaligned. R.m.s. alignment errors ob up to 
10 pm have been considered for pick-ups; above this value 
CLIC wake-field effects dominate, masking the relative influ- 
ence of trajectory and dispersion minimization. Resolution er- 
rors a~, are supposed to amount to a few tenths of a micron 
and are not considered when measuring trajectories. 

Up to ob = 3 pm the most effGznt correction, considering 
both convergence speed and asymptotic value, is got when 
the trajectory is weighted more than the dispersion (up to a 
ratio of 10). In this case when the trajectory is corrected the 
dispersion follows and both contributions are simultaneously 
reduced. 

Figures 1. 2 and Figs, 3-5 deal with (Tb = 5 pm and 
0, = 10 pm respectively. In the fust case, the blow-up curves 
given after the same number of iterations concern different 
weighting configurations: curve (a) corresponds to the cast 
where both the trajectory and the dispersion have the same 
weight, whereas in curve (b) the weight of the trajectory is 
stressed by a factor IO; cUrYe (c) is obtained when starting 
with an emphasis on the trajectory to converge rapidly and 
then giving more power to the dispersion to improve the final 
result. The blow-up between cases (b) and (c) drops by a fac- 
tor of 2 (Fig. 1). The observed improvement corresponds to a 
betlcr correction of the dispersion (Fig. 2). 
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Figure 1. V EMTI’ANCE GROWTH RATE (ab = 5 pm) 
(a) trajectory and dispersion have the same weight 
(b) trajectory weighted 10 times more than dispersion 
(c) weighting more trajectory frost then dispersion in last iterations 
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Figure 2. V TRAJECTORY OFFSFl: FOR 6 = 3.5% (Ob = 5 jUn) 
Dispersion after correction in cases (b) and (c) 

In Figs. 3-5, when 0, = 10 pm, the same observations 
hold (cases (a) and (b)). In addition here, when in the last iter- 
ations the dispersion is reinforced 10 times, its quadratic term 
is also weighted 10 times more than the linear one (case (c)). 
A significant improvement can be further observed - compar- 
ison behveen (b) and (c). Both the trajectory and the disper- 
sion are reduced in case (c) - Figs. 4 and 5. 
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F&ye 3. v EmANcE GROWTH RATE (ub = 10 w) 
(a) trajectory weighted 10 times more than dispersion 
(b) idem (a) with dispersion weighted 10 times more in last iterations 
(c) i&m (b) with quadratic term reinforced 10 times in last iterations 
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Flgw 4. v 7RAJECTORY AT NOMINAL MOMENTUM ($ = 10 p) 
Comparison between cases (a) and (c) 
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Figure 5. V TRAJECTORY OFFSET FOR 6 = 3.5% (ffb = 10 pm) 
Dispersion after correction in cases (a) and (c) 

5. CONCLUSION 

This study shows that a closer look at an achromatic cor- 
rection algorithm is of interest for an optimum control of the 
blow-up. The contribution of the trajectory preponderates in 
most cases at the beginning of the correction. An emphasis of 
the dispersive term in the next iterations can still improve the 
result depending on the conditions (initial emittance, wake 
fields, alignment errors) as dispersion can be further reduced. 
It may even be beneficial to cope with non-linearities versus 
energy deviation affecting the optics. 

In practice this can be carried out by an appropriate and 
dynamical weighting process of the various terms that come 
in the algorithm. 
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