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Abstract

Assuming that many betatron oscillations occur between
crossings so that the betatron phase is uncorrelated from
one crossing to the next, we estimate the diffusion rate
for the emittance growth due to periodic crossing of cou-
pled nonlinear resonances. It was shown that the diffu-
sion rate is more or less independent of the frequency, but
it is inversely proportional to the modulation amplitude.

Due to tune modulation the transverse tunes periodi-
cally cross high order resonances. It is commonly believed
that these repeated crossings of high order resonances can
lead to beam size growth. In previous work, Chasman et
allll, Evens and Gareytel, and Bruck(® considered the
repeated crossings of a single resonance with a single mul-
tipole term. As the working point is near the diagonal in
tune space, however, the tunes actually cross many coupled
resonances of a given order since, for each high order res-
onance, there is a group of dense resonance lines near the
diagonal. Furthermore, as it will be shown in Appendix,
the periodic crossings of a single resonance with a single
multipole term could lead to an infinite growth within a
finite time. In this paper we study periodic crossings of
high order coupled resonances. We consider the case in
which the tunes are near the diagonal and modulated at
the synchrotron frequency due to momentum oscillation
with finite chromaticity. The modulation amplitude is as-
sumed to be large enough for the working point to cross
all resonances of a given order repeatedly. It is, however,
small enough for these coupled resonances to be treated as
an isolated group of resonances. By assuming that the be-
tatron phase at the crossing is uncorrelated, we find that
the rms growth rate of emittances is nearly independent
of the modulation frequency and inversely proportional to
the modulation amplitude.

In terms of action-angle variables (I, y, #:.y), the Hamil-
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tonian for betatron oscillations can be written as
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8 and C are the azimuth and circumference, respectively.
The nonlinear perturbation U is the beam-beam interac-
tion or magnetic field imperfections. In general, U can be
expanded as
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Eq. (7) shows that the betatron resonances are excited
when tunes satisfy the relation

svp +tvy, = g+ 6g with g <<l . (8)



Consider the effects of the highest order betatron reso-
nances due to the kth order multipoles, i.e.,

svd +tv) =g withs+t=%k . (9)

By averaging over all rapidly varying oscillations except
for the resonances of Eq. (9), we reduce the multipole
perturbation U in Eq. (7) to

U=U+U; (10)

with Up the average value of U with respect to ¢,y and 6.
This leads to the amplitude dependences of the tunes,
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all of the resonance terms
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Thus, for high order resonances, |Ug| >> |Ui| and the

amplitude dependence of the tunes is important. In the
rotating frame
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U, becomes independent of § and the new Hamiltonian is
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where Up is given in Eq. (11) and
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with xp = (k — Dbz + Iby + 1n1. The equations of motion
are

k
=Y % "(k- DDu(21)Y*=D72(21,) 2 sin(xnm)  (19)

h =0

k
n=>3 ZID,,,(ZII)("”)”(ZI,,)'” sin(xnt)

A 1=0

(20)

715

o, | oU

o=, — 104 ol 4 L

s =Ve et G YL @)
aU oU

W o=, — 04 20 2L

y = Vy— Yyt 3, + a1, (22)

where prime denotes d/df.
Consider the tunes vy, modulated at the synchrotron
frequency v,,

Vey = Uy + (Av)cos(v,8) . (23)

We assume that within each synchrotron oscillation all
betatron resonances of Eq. (9) are crossed forward and
backward once. The condition for this assumption is
Av > |9 — v3|. Since I, change very slowly compared
with changes in by 4, they are adiabatic invariants. To es-
timate the changes of I, y, one can approximate the vari-
ation in phase as

Av
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where 7, = (k—1)bz(0) +1by(0) +nar. Then the changes of
I,y during each crossing can be estimated by substituting

Eq. (25) to Eqs. (19) and (20), and integrating over 8 in
a half period of synchrotron oscillation. Since
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where J,, is the nth order Bessel function, the change of
I, during each crossing is approximately
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Al can be obtained by exchanging z and y in Eq. (27).
For large k, the dominant contributions in the summations
of Eq. (27) are from the terms with

(k= Dbz + 16y =~ n,v, (28)

These are the synchro-betatron sidebands. Therefore most
of the emittance growth during the crossings of betatron
resonances occur near the sidebands. Keeping only the
dominant terms, the changes of I,y per half synchrotron
oscillation is
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where n, is the order of the synchrotron-betatron reso-
nance satisfying Eq. (28). Since
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If we assume many betatron oscillations between reso-
nance crossings, it is reasonable to assume that the beta-
tron phase at the crossing is uncorrelated from one cross-
ing to the next. In this case the repeated crossing can be
treated as a random walk process and the rms growth of
I, , during a half period of the synchrotron oscillation can
be obtained by averaging (Al )% over 77, L.,

(31)
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The diffusion rate of the emittance growth is then

(32)
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and K, can be obtained by exchanging = and y in Eq.
(33).

As can be seen from Eq. (33), the diffusion rate is more
or less independent of v,. This is because each change in
I,y is larger for smaller v,, but the number of crossings
per turn is correspondingly smaller for smaller v,. Eq.
(33) also shows that the diffusion rate increases as Av de-
creases. To justify this result we should point out that Av
here was assumed to be much larger than the total reso-
nance width and these resonances are isolated. Therefore a
“small” change of Av will not change the crossing process.
However, for a given modulation frequency, the smaller the
Av, the longer the time spent in each individual resonance.
Consequentially the diffusion will be enhanced.

The validity of the random walk approximation for the
emittance growth is based on the assumption that the
betatron phase is uncorrelated between successive cross-
ings. One possibility of this betatron phase randomness
is chaotic motion near the synchro-betatron resonances.
By using the resonance overlap criterion,[*] the sufficient
condition for the chaotic motion on the synchro-betatron
resonances is estimated as
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where I7  are the betatron actions corresponding to the
synchro-betatron resonance. In most cases the chaotic
threshold of Eq. (34) is overestimated due to many sim-
plifications in the model for the transition to chaos. As a
matter of fact, the chaotic layers generically exist near the
separatrices of resonances, and also there are many “ex-
ternal” noise in real machine. As many betatron oscilla-
tions occur between resonance crossings, the condition for
the betatron phase to be uncorrelated between successive
crossings should not be as stringent as Eq. (34).

APPENDIX

If we assume that a single multipole term is important,
the Hamiltonian (17) can be written as
KI_, Ii,b b)) = [(ve — vk = 1) = (vz — v
(e = vk = 1) + (ve = vy + Uo(Ls, 1)
+(2L) 5072210172~ Darcos(by + nui) (35)
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Assuming crossings with uncorrelated betatron phase, we
obtain the change of I? during a half period of the syn-
chrotron oscillation

(k — )b, + Ib,.
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Then the rms growth of I, can be expressed by
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With Eq. (36), this equation can be integrated as
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For k > 3, the left side of Eq. (40) remains finite even
if I, — oo, implying faster than exponential buildup, in-
cluding infinite I, even for finite 8. It is shown that a
single multipole term is no longer valid and the detuning
effect due to the amplitude dependence of tunes must be
considered.
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