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Abstract tonian for betatron oscillations can be written as 

Assuming that many betatron oscillations occur between 
crossings so that the betatron phase is uncorrelated from 
one crossing to the next, we estimate the diffusion rate 
for the emittance growth due t,o periodic crossing of cou- 
pled nonlinear resonances. It was shown that the diffu- 
sion rate is more or less independent of the frequency, but* 
it is inversely proportional to the modulat,ion amplitude. 

H(L. I,, d,, by,@) = v,L + I&+ 

U(~costl,z, ~COS(i~y,~) 

where 

$ - 4r,y - v,,~@ + ; Z.Y - 
s 
o’ $d@ = dz,y + ~z,y 

I,Y 

Due to tune modulation the transverse tunes periocli- 
tally cross high order resonances. It is commonly believed 
that t,hcse repeated crossings of high order resonances can 
lead to beam size growth. In previous work, Chasman et 
a~[‘], Evens and Gareyte[‘], and Bruckl”] considered the 
repeated cro,ssings of a single resonance with a single mul- 
tipole term. As the working point is near the diagonal in 
tune space, however, the tunes actually cross many coupled 
resonances of a given order since, for each high order res- 
onance, there is a group of dense resonance lines near the 
diagonal. F~~rthermore, as it will he shown in Appendix, 
the periodic crossings of a single resonance with a single 
multipole term could lead to an infinit,e growth within a 
finite time. In this paper we study periodic crossings of 
high order coupled resonances. We consider the case in 
which the tunes are near the diagonal and modulated at 
t,he synchrotron frequency due to momentum oscillation 
with finit,e chromaticity. The modulation amplitude is a.- 
surntd to be large enough for the working point, to cross 
all resonances of a given order repeatedly. It is, however, 
small enough for these coupled resonances to be treated as 
an isolated group of resonances. By assuming that, the he- 
tatron phase at the crossing is unrorrelated, we find that. 
tire rms growth rate of emittances is nrnrly indt~pendtwt 
of the modulation frequency and inversely proportional to 
the modulation amplitude. 

19 and C are the azimuth and circumference, respectively. 
The nonlinear perturbation U is the beam-beam interar- 
tion or magnetic field imperfections. In general, U can be 
expanded as 

.?Y =: t3 /l~,h(2x*~=)k’“(zI~~~)“z 5 2 Ck”,Ch 
k/h m n 

x cos(W cos[m(tJ, + a,)] cos[n(4y + cry)] (3) 

where 

CkO = 
k! 

P($!)Z k even 

0 k odd ’ 

If we define 

A* (iIlt~ex)r~~*(il~d~~) - - 

1 

/ 

21 

5 
pk/*i~/2ei(m~=fn~yf cos(h@)ek’8de 

= Y (6) 
0 

where index = jk: I, h, 171, II, q), 

III terms of artion-angle variables (Iz,,,, Or,y), t,he Hamil- 

c’ = x a,Ik,h(21,)kiz(ZI,)f’2 e f: C&,,,C,n 
klh m n 

x jTJ {A+ cos (mt$, + nd, - PO + v+> 
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+A-cos(m4,-n&-qtJ+q-)} . (7) 

Eq. (7) shows that the betatron resonances are excited 
when tunes satisfy the relat,ion 

sv,+tvy=q+6q with 6q<<l . 

(1) 

(2) 

(4) 

(8) 



Consider the effects of the highest order betatron reso- 
nances due to the kth order multipoles, i.e., 

sv,” + Iv,0 = q with s +-t = k . (9) 

By averaging over all rapidly varying oscillations except 
for the resonances of Eq. (9), we reduce the multipole 
perturbation U in Eq. (7) to 

u = u, + u, (10) 

with t;, the average value of CJ with respect to dr,,, and 8. 
This leads to the amplitude dependences of the tllnes, 

k k-m 

Uo = E c c Emn (~IX”2(2~y)“2 , 

h m=O I=0 
(11) 

where 
2x 

E 
/,4,,h m!l! 

h’m = p+Lt1q !f)!( f)!]” 0 
J r7z 

m/2py2 cos( hO)dB (12) 

for m and I even; aud Ehl,,, = 0, for m or 1 odd. L’r includes 
all of the resonancie terms 

k 

u1 = c x ~h,(.2~~)(k-‘)‘2(2~y)“2 coS(,&,,,) (13) 
h I=0 

where xh[ = (k - I)4= + I&, - q6’ + V,I and &I = 
24-kpk-,,hAhr with 

Ahre i9b.l 

x exp{i[(t - I)oz + In, + q8]} cos(h@)dO . (14) 

For k large, and any even tn and 1 with m + 1 < k, 

(15) 

Thus, for high order resouances, IUel >> llill and the 
amplitude dependence of t,he tunes is important. In the 
rotating frame 

b - b,Y - 4.!,@ 7 ‘,Y - (16) 

Ur becomes independent, of 6 and t,he new Hamiltonian is 

H(I,, Iv, b,, by) I= (vz - v:,Z.z + (uY - v,“)Zy 

+Uo(L,I,) + U1(L,Zy,bs,by) (17) 

where Uo is given in Eq. (11) and 

u, = If: ~h1(2~~)(k-1)12(2~y)r’2COS(Xh,) (18) 

h I=0 

with xh, = (k - I)b, + lb, + t]hr. The equations of mot,ion 
are 

IS = x &(k - l)Dh,(ZI,)(k-‘)/2(2Zy,)1/2 sin(Xhr) 
(19) 

h I=0 

1; = Ci:IDh1(2JI)'k-~"2(21v)f'2Sin(lhr) (20) 

b: = u, - 

b; = vy - v; + 9 + $k 
Y Y 
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(21) 

(22) 

where prime denotes d/d0. 
Consider the tunes v,,Y rmdulat~etl at, t,hc synchrotron 

frequency v,, 

v =,y = V,,Y - + (A~)cos(v,B) . (23) 

We as~me t.hat wit.hin each synchrotron oscillation all 
betatron resonances of Eq. (9) are crossed forward and 
backward once. The condition for this assumption is 
Av > Iv,” - $1. Since Zz,y change very slowly compared 
with changes m br,y, they are adiabatic invariants. To es- 
timate the changes of Zz,y, one can approximate the vari- 
ation in phase as 

b,,, 2: 6,,,8 + G sin(v,B) + b,,,(O) (24) 

where 6,,, = 3,,, - ~2,~ + aUe/aZ,, and 

Y,,l N [(k - 1)6, + /6,]8 + ke Sin(v,8) + ?jh, 
u, 

(25) 

where ?jh, = (k-I)b,(0)+Iby(O)+rlh/. Then the changes of 
Zz,y during each crossing can be estimated by substituting 
Eq. (25) to Eqs. (19) and (20), and integrating over 6 in 

a half period of synchrotron oscillation. Since 

sin [(k - !)& + IS,]0 + kg sin(Y,@) + ?jhI) = 

,,gm Jn (k:> sin [((k - i)& + 16, - nZ’,)@ + ‘7h,] (26) 

where J,, is the nt,h order Bessel function, t,he change: of 
Z, during each crossing is approximately 

hn I=0 

cos(?jhr) - cos ((k - I)& + 16, - nv,)~ + qhl x [ 1 . 
(k - I)& + 16, - RV, 

(2i) 

AZy can be obtained by exchanging z and y in Q. (27). 
For large k, the dominant contributions in the summations 
of Eq. (27) are from the terms with 

(k - l);i, + 16, 2 n,v, . (28) 

These are the synchrobetatron sidebands. Therefore most 
of the emittance growth during the crossings of betatron 
resonances occur near the sidebands. Keeping only the 
dominant terms, the changes of Z,,, per half synchrotron 
oscillation is 

AI, = ; x&k - /)&,,(2z2)(k-‘)‘2(2~y)‘/2 
h I=0 

X J,,, WI 
h I=0 
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where n, is the order of the syttchrotrott-bct.atrctn reso- 
nance satisfying Eq. (28). Since 

J,,, (kg N J;zjigcos (kg - (2 + a> g ,(30) 

If we assuttte many betatron oscillat,ions t&wren reso- 
nance crossittgs, it is reasonable to assume that the beta- 
tron phase at the crossing is uttcorrelated front one cross- 
ing to the next,. In t,ltis case t,ltc repeat,ed crossing can be 
treated as a random walk process awl t,ltc rtns growth of 
I,,, during a half period of t.hrA synchrotrott oscillat,ion can 
he obtained by averaging (AI,,,)’ over 5, i.e.. 

3.1: = j-& t: -p(k - 1)20~,(21=)(k-‘)(21,)’ 
h I=0 

(32) 

The diffusion rate of t,he emit,tancr growth is then 

h I=0 

X(21r)(k-‘)(21y)‘cos2 (kg- (T++) ,(33) 

and K, cart be obtained by exchanging I and y in Eq. 

(33). 
As can be seen from Eq. (33), the diffusion rate is more 

or less independent of v,. This is because each change itt 
Iz,V is larger for stttaller V, ( but t,lte number of crossings 
per turtt is correspondingly smaller for stttallt%r 11,. Eq. 
(33) also shows that the diffusion rate increases as Av dr- 
creases. To ,justify this rrsnlt. we should point out t,hat At/ 
here was aqiutned to be much larger t,ltatt the total WSO- 
ttance width and these resottanccs arc isolated. Therefore a 
%malln change of Au will not change t,he crossing process. 
However, fo:r a given modulation freqnc~rtcy, the smaller the 
Av, the longer the time spent in caclt individual resonance. 
Consequentially the diffltsiott will t)c enlxmcrd. 

The validit,y of the random walk approxitnat,iott for thcb 
emit,tance growth is based on the assutrtl)tiott that, the 
heMron phase is unrorrelatrd bet,wtW~ successive cross- 
ings. One possibilit,y of this hrtatron phase randomness 
is chaotic ntotiott near t,he synchro-bet,at,rott resottances. 
By using the resonance overlap criterion,[“] the sufficient, 
condition fo’r the chaotic motion on t,he synchro-hetatrott 
resonances is castitnated as 

Dh,(21:)(k-1)/2(21~)‘/2 (k - ])x3.+ 
[ 3X$ 

2l(k -- I)-$$ + 1’ ~ 
: ; “I;‘” I 

where 1: y , arc the Matron actions corresponding to the 
synchro-betatron resonance. In most cases the chaotic 
threshold of Eq. (34) is overestimated due to many sim- 
plifications in the model for the transition to chaos. As a 
matter of fact, the chaot.ir layctrs generically exist, ttcar the 
separatrices of resonances, and also there are many “ex- 
ternal” noise in rent machine. As many betatron oscilla- 
tions occur between resonance crossings, the condition for 
the ketat,ron phase to be unrorrelated between successive 
crossings should not be as stringent as Eq. (34). 

APPENDIX 
If we assutm~ that a single muttipole term is important,, 

the Hamiltonian (17) can be written as 

K(I-,I+,b-,b+) = [(ur - v,o)(k - I) - (vr - v;,l]I- 

+[(u, - Q)(k - 1) + (l/x - J&l]I+ + C’o(.L, I,) 

+(21;)‘k-“‘“(21Y)“’ x D,,, cos(b+ + f/h/) (35) 
h 

where I+ = I,/(k - [) 5 I,/1 and b& = (k - I)b, rfr lb,. 
Since (71i/O6- = 0, 

I- = &I1 - fIY = constant (36) 

Assuming crossings with uttcorrelat.ed betatron phase, we 
obtain the change of 1: during a half period of the syn- 
chrotron oscillation 

AI: = &(k - 1)‘(21,)+‘)(21,)’ 
8 

(37) 

where 

B=(j-$:i)cos2(k&(~+$) . (38) 

Then the rttls growth of I+ can he expressed by 

tq _ AI: _ (k - 1)“B 

tlR ” - kAl, (wk-‘w,) 
u. 

(39) 

Wit,h Eq. (3G), this equation ran he itttcgratr>d as 

J 
14 I+tlI+ 

I+(O) (1, + I- jk-‘(I+ - I- 1’ 

_ B(k - Qk-‘t21 
2t-kkhv 

0 . (40) 

For k 2 3. the lcfr. sid<> of Eq. (40) remains finite even 
if I+ -+ $x), ittll)lyittg f;t.qttlr than exponential buildup, in- 
cluding infinite I+ even for finit,r B. It is shown that a 
single multipolr t,c,rtrt is no longer valid and the detutting 
effect, due to the atnplitudr dependence of tunes must be 
cotisitlt:ri~tl. 
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