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Abstract 

The nonlinear beam dynamics of transverse betatron os- 
cillations were studied experimentally at the IUCF Cooler 
Ring. Particles were kicked onto resonance islands and the 
properties of these islands were studied. The island tune 
was determined with high precision by Fourier analyzing 
the spectrum containing the island oscillations. The island 
width was estima.ted based on a single resonance model. 
The Hamilt.onian of particle motion near a resonance con- 
dition was thus deduced. Future plans for nonlinear ex- 
periments will hr discussed. 

1 INTRODUCTION 

The IIJCF Cooler Ring provides an ideal environment for 
nonlinear beam dynamics experiments’,2. The Cooler ring 
is hexagonal with a circumference of 86.82 m. The relative 
FWHM momentum spread of the beam is about rtO.0001. 
The 95% emittance, or phase space area, of the proton 
beam is electron-cooled to less than 0.3 7r mm-mrad in 
about 3 sec. The beam lifet.ime can bc as iong as hours. 

The experimental procedure start,ed with a single bunch 
of about 3x10s protons with kinetic energy of 45 McV. 
The cycle t,imc was 10 seconds. The injected beam was 
electron cooled for about 3 seconds. The bunch length wan 
about 3.6 m (or 40 ns) with a revolution period of 969 ns 
at an rf frequency of 1.03168 MHz. The beam was kicked 
with various anglular deflections, BK, by a pulsed deflect- 
ing magnet, with a pulse width of 500 IIS and rise and fall 
times of 100 ns. The electron cooling system was turned off 
20 ms before kicking. The subsequent beam-centroid dis- 
placement was measured with two RPMs having an ItMS 
position resolution of about 0.1 mm. The stability of the 
horizontal closed orbit were measured t.o be less than 0.02 
mm. The turn-byturn beam posit,ions were digitized and 
recorded in t.rans.ic~tlt recorders. A total of ,I096 turns were 
recorded in the available memory buffer for each kick. 

The resonance struct,ure was investigated using difl% 
ent orbit deflector strengths. Transverse displacements 

(21, Q)n were rne~nred at the n-th turn using the two 
BPMs. The relative betatron amplitude functions and the 
betatron phase advance betwcrn t,he two RPMs were de- 
duced from the turn-by-turn data of (zl, ZZ), The phase 
space coordinates were then transforlned to the normal co- 
ordinates, (~1 ,P~I)~, where p,l = --f$$-~, + ,OZ~;. For 
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linear betatron motion, the phase space ellipse in the nor- 
mal coordinates is a circle3. Fig. 1 shows the Poincarti 
map, where the betatron tune, v,, is 3.7578 for the left 

graph and 3.7500 for the right graph. The Poincard map in 
the right part of the figure shows that particles were kicked 
onto the fourth order resonance islands. Within an islarld 
the particle trajectory traced out an ellipse around the 

corresponding stable fixed point. However due t,o the hor- 
izontal and vertical brtatron coupling, t,he ellipse around 
the stable fixed point in an island is smeared. 
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Fig.1 Thr Poincari nlaps, (~1. II=,), at, the betat,rcrn tunes 
v, = 3.7578 (left) and Y, = 3.7500 (right) arp shown 
Ths rorresponding maps using t,hp actiorl-angle variables. 
(.I,, ~$1) are also shown in thca lower part of thr figure. 

2 DATA ANALYSIS 

The fast Fourier transform (FFT) spectrum of thr beta- 
tJron motion at, t,he fourth ordrr resonance, I/~ = 3.7iO@, 
is shown in Fig. 2. The vertical betatron tune is also ob- 
scrvrd at vY = 5 - 0.3024 due t,o linear tsetatron coupling. 
The ratio of the betatron peaks in the Fourier spectrum is a 
measure of t.hc* amount of betatron coupling. M’e purposly 
moved the vertical betatron tune away from the horizontal 
tune to reduce the effect, of tha betatron coupling. 

The frequency of oscillat,ion about the island providrs 
useful information. Using the data of Fig. 1, the FFT 
spectrum of oscillations in a single island, i.e. every fourth 
turn around the ring for the fourth order rrsonanrc, is 
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shown in Fig 3. Note that there are two dominant peaks: 
one located at v coup,rng = vz - vy + 1 = 0.0524f 0.0007 due 
to linear coupling and another corresponding to the island 
tune, Visfnr,d, of 0.0013 rf 0.0007, where the accuracy of 
the island tune nicasurernenf is limited by the available 
memory in the transient recorders. 
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Fig.2 The FIT spectrurrl for t,hc bctatron motion at the 
resonance condition 4v, = 15 is shown. 
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Fig.3 The FFT spectrum of the motion around a fixed 
point. in an i:+land is shown. The island tune is 0.0013. 

The one dimensional resonance island ellipse shown in 
the right side of Fig. 1 is obscured by the linear coupling. 
Yet, the island structure is retained. The motion is a su- 
perposition of t,hc more rapid coupling oscillation and the 
slower resonance island oscillation. The phase space tra- 
jectory appears as the coupling oscillatsion winding around 
a rcsonanrc island ellipse. For the coupling tune of 0.0524 
at the fourth order betatron resonance condition, it takes 
five island-turns (e.g. the tst, 5th, Sth! 13th and 17th 
orbital turns for the first island etc.) for the particle to 
complete one loop around a centroid in the coupling el- 
li~mc. The sise of the coupling loop depends on the beta- 
tron coupling stri~ngth. A five-island-turn tnoving average 

of the phase space coordinates will effectively eliminate 
t,his rapid coupling motion, revealing the slower resonance 
island oscillation. The moving average will trace out an 
ellipse around the stable fixed point of an island with a 
characteristic frequency of the island tune of 0.0013. This 
corresponds to a period of 800 orbital or 200 island turns. 
The small amplitude oscillation around the island fixed 
point is also an ellipse. 

2. I Hamiltonian 

Near the single resonance, mv x n, the EIamiltonian can 
be approximated by’ H = Ho(J) + g(J) cos(md - n6’ - x). 
Here (J, 4) are the conjugate action-angle variables of the 
Matron motion, and N is a phase factor determined by 
the distribution of nonlinear elements in the accelerator. 
The betatron tune is given by v(J) = z z vo + aJ, 
where we have used a first order Taylor series expansion 
in the action variable with vc as the betatron tune at zero 
betat,ron amplitude, o as the coefficient of the first order 
expansion, g(J) as the resonance strength and B = s/R as 
the orbital angle around an accelerator. For the present 
study, m = 4 and n = 15. 

A canonical transformation with generating function 
Fz(d, 51) = (4 - fy)J 1 can be performed easily to yield a 

new EIamiltonian, fi = Hc(Ji)-;3J~1+g(Jr)cos(mdr--x), 
where (Jr,di) are the new conjugate action-angle vari- 
ables with J1 = J. Note here that the new Hamiltonian 
r”l is a constant of motion; the particle tractory follows 
a constant contour of J?. Fixed points of the Hamilto- 
nian are given by aJ?/aJi = 0 and 8fi/&$r = 0, i.e. 
~1(51)--fi+g’(J1)cos(m41--~) = Oandsin(m~$l-X) = 0. 

Let J, be the corresponding action such t,hat the beta- 
tron tune satisfies a resonance condition; i.e. mv(J,.) = n. 
The Hamiltonian can then be expanded around the reso- 
nant action: 

H=~(J~-Jr)Z+g(J~)cos(m~~-~)+~~-. (1) 

Thus the equation of motion in the resonance region sat- 
isfies the pendulum like equation of motion. The island 
tune is given by ~~~~~~~~ = mm. Hence the resonance 
strength is given by g = ~,z~,ond/(m2cr). The island width, 
or the maximum difference in the action variables be- 
tween the stable fixed point and the separatrix, is given 

by AJ = (J1 - Jr) FZ ZE = +$y? 
The parameter o could be obtained from the slope of 

the bctatron tune as a function of the kicked betatron am- 
plitude J. Alternatively, the ellipses of particle motion 
around the stable fixed point, can be described by the in- 
variant Hamiltonian of Eq.(l). Substituting v,?a,ond/(m2ar) 
for g in Eq.(l), the parameter Q can be obtained through 
matching the particle trajectory with the contour of the 
Hamiltonian. Fig. 4 shows a (J,4) plot of the data of 
the island ellipses of Fig. 1 after making a five island-t,urn 
moving average in each island in order to remove the cou- 
pling motion. Using the Hamiltonian in Eq.( l), we obtain 
u = 0.00048 & 0.0001 (r mm - mrad)-i. The correspond- 
ing separat,rix is also shown in Fig. 4. 
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2.2 Linear Cloupling and Resonance island 

The linear coupling coefficient due to skew quadrupoles 
and solenoids is given by 

c- = & f&py[h’+ $f($ - $) - if”(~ + &)]x 
x ,dri’z -II~.-~v,-v.=+l)elt~s 

with K = i(w - v) and M = $$-. Using the 
skew quadrupoles located In the high dispersion function 
region) we have corrected the linear coupling coefficient 
from 0.030 to less than 0.001. After the linear coupling 
correction. part,icles kicked ont.o resonance islands remain- 
ing coherent for more than a few seconds. Fig. 5 shows 
the Poincart? map after the resonanrc: corrwtion. The cor- 
recponding FFT spectrum shows clearly a single betairon 
tune with resonance island sidebands. 1Jsing tjhesi: phase 
space maps, t,he detailed functional form of g(J) in the: 
Hamiltonian can be obtained4. 
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Fig.4 The stable ellipse around island fixed points in the 
action angle varia.ble is fitted by the Hamiltonian of Eq.( 1). 
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Fig.5 The Poincark maps around the fourth order reso- 
nance islands after linear coupling correction. 

momentum deviation obtained from the digitized position 
from a BPM located in a high dispersion region. Fig. 6 
shows an example of the longitudinal phase space tracking 
and its FFT spectrum. The synchrotron tune as a function 
of the synchrotron amplitude was thus rncasureti. 
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Fig.6 The longitudinal PoincarC map and the correspond- 
ing FFT spectrum. 

3 CONCLUSION & FUTURE 
PROSPECTS 

We studied properties of fourth order nonlinear resonance 
islands. One interesting feature is that the betatron cou- 
pling does not destroy the structure of one dimensional 
resonance islands. Experimental data were used to deter- 
mine resonance island parameters, &slo,,d, J, and cr. The 
Ilartliltonian for the particle motion was derived near thp 
resonance region for the first time. 

Currently, we are expanding our particle tracking sys- 
tem into two transverse degrees of freedom with memory 
buffer of 256K turns. With much improved hardware sys- 
tems, our nonlinear experiments will study (1) PoincarP 
maps at 2D resonances, e.g. 2vZ+2u, = nor v,+2v, = 11, 
(2) the survival plots with known prescribed multipole ele- 
rnents, (3) the effect of cooling on the phase space rnot,ion, 

(4) the induced tune modulation on the particle motion 
near a resonance condition and possibly (5) synchro-beta 
coupling resonances. 
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2.3 Longitudinal Phase space tracking 

We mapped the longit,udinal phase space by digitizing the 
hllnch nhase coordinate relative to the rf phase, and the 


