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Abstract 

Analytic formulas for the matched dispersion v and the 
transition energy yr are derived for a missing magnet lat- 
tice. As an example, three lattices having different number 
or/and location of empty half-cells are considered. Using 
the numerical program MAD along with derived formulas, 
the variation of yr, peak dispersion ]T],,,,,~ with betatron 
tune are computed in these lattices. Comparison shows 
a good correspondence between values obtained by using 
the analytic formulas and those given by MAD. 

1 INTRODUCTION 

Approximate analytic expressions for lattice functions are 
useful tool for lattice design, e.g. for a quick estimate 
of lattice parameters, for guiding numerical minimization 
programs, e.g. MAD [l]. In early lectures on synchrotron 
theory [2], analytic formulas of beta functions and disper- 
sion were d’erived for regular FODO cells. Recently, more 
general and some new formulas have been derived for regu- 
lar arrays of FODO and FDO cells [4,5]. More complicated 
but interesling subject for analytic study is superperiodic 
lattices, i.e. lattices having a super&I’s structure. It is 
well known, introducing a superperiodicity assume either 
a modulation of the beta function or a perturbation of the 
bending radius p, or both (see e.g. [3]). The variation 
of the p can be achieved, for example, in a lattice having 
structure oi simple focusing cells, e.g. FODO cells, some 
of which are empty and others filled with dipole magnets 
- missing magnet lattice. Missing cells is used not only 
for design o’f transitionless lattices, but also for meeting a 
requirement of providing lattice with free spaces for injrc- 
tion, extraction, acceleration, etc. hardware. 

In recent report [4] an analytic approach was proposed 
to design of transitionless lattices having modulated beta 
function. Piow, going on with analytic study, we intend 
to derive an.a.lytic formulas for lattice functions in missing 
magnet lattices. 

2 THEORY 

Let us consider a missing magnet lattice with S super- 
periods. Let each superperiod has N FODO cells, N, of 
which are empty and others are filled with dipole magnets 
having bending radius p. Let us supposed, for simplicity, 
each superperiod has a mirror symmetry. The empty half- 
cells we wil.l mark by its ordinal number in a superperiod: 
jk , k = 1, :2.. . NE, e.g. j, = 1, js = 3 means that first, 
third, 2Nth and [(2N + 1) - 31th half-cells are empty. 

Further let us suppose that dipole magnets are relatively 
weak and we may neglect their focusing. Then, obviously, 
beta functions, chromaticity, betatron tunes are aImost 
the same as in the regular lattice (unperturbed) having 
N cells filled with dipoles. And, therefore, the analytic 
formulas for these parameters, derived for regular FODO 
cells in approximation of thin lens and weak focusing of 
the magnets [2,4,5], are valid for a missing magnet lat- 
tice. In this approximation the only effect of empty cells is 
changes in the dispersion function and transition energy. 
The matched dispersion 77 and transition energy ri can be 
represented in terms of Fourier components [6,3]: 
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where harmonic components (L,,, generated by missing 
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where v = cr /2x, ps is the phase advance over each super- 
period in horizontal plane, Q = VS the betatron tune of 
the whole lattice, 4(s) = p(s)/v the normalized phase ad- 
vance, R is the average radius. The eq. (3) is easily found 
to be 
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where po is the bending radius in dipole magnets of the 
unperturbed lattice, and p by po = pN/(N - N,). The 
second term in (4) is an integral over empty half-cells. 

Further, assuming that 
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where X =< PO”‘” > 1: 4, we have from eq. (4) 
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where 6,” = 1, if ~a = 0, and 6,,0 = 0, if n # 0. Using the superperiod. These partly cumbersome expressions (9)- 
Fourier series (l), (2) end eq. (6) we obtain 

9%[1- Y(h) ~“uv$+yn”], 

where we used the fact that r,02 x g, go z p’f’ 9, and 
TtO, Rio are the unperturbed transition energy and disper- 
sion. 

It is then straightforward, but cumbersome, to evaluate 
the sums over n in eq. (7), (a), by using formulas taken 
from ref. [7]. We shall not do this explicitly here, just give 
the result: 

(15) become slightly simpler, if the empty half-cells run 
from 1 to N,, i.e. j, = k = 1,2,. . . N,. In this case, by 

(7) 
evaluating the sums over jk, we have 
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where 

hl = (N - N,)sinrv- N COSV~ sin($(N - Np)), 

h2 = -N, sin 7~v + N sin T cos(u(7r - d)), (17) 
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And for Tt we obtain 
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3 AN EXAMPLE AND 
COMPARISONS WITH MAD 

As an example we consider three missing magnet lattices 
for 8 GeV synchrotron. All the lattices have eight su- 
perperiods, with four FODO cells in each superperiod, 
but different location of empty half-cells and/or its num- 
ber. The maximum pole-tip field in dipoles is taken 1 T, 
gaps between dipoles and quadrupoles are 0.5 m, length 
of quadrupoles is 1 m. Some other parameters are shown 
in Table 1. For these lattices we have computed the vari- 

Table 1: Parameters of missing magnet superperiods for 8 
GeV synchrotron. 

sup. I sup. II sup. III 
Length/sup [m] 47.05 62.57 62.57 
N 4 4 4 
NC 1 2 2 
jk 1 132 173 
qjip& bl 3.88 5.82 5.82 

where 
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ation of yt and the peak dispersion 1~),,, with betatron 
tune, by using the numerical program MAD [l] and the 
formulas (9)-(15). For unperturbed values of dispersion 
and transition energy 70, rto in (9)-(15) we used its ana- 

I;=1 lytic expressions given in [4,5]. Th’e results of comparison 
N.-l N, between analytic and numerical calculations are shown on 

4 x ‘T;7 cos($-(2N+l-2jm))x the Fig. 14. 

k=l m=k-t-1 It is seen that there is a good correspondence between 

cos(s(2jk - 1 
values predicted by eq. (9)-(15) and numerical ones. Be- 

1)) (15) sides, as it is seen from Fig. 4, the eq. (9) gives not only a 
good prediction of the peak dispersion but also correctly 

As it could be expected, q and 7t depend on not only describes behavior of the dispersion function in a superpe- 
number of empty cells, but also on its location within a riod. 
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