
670 

A Taylor-Expanded Generating Function 
for Particle Motion in Arbitrary Magnetic Fields 

Johannes Bahrdt, Godehard Wiistefeld 
BESSY mbH 

Lentzeallee 100, D-1000 Berlin 33, Germany 

Abstract 

Analytical expressions for a Taylor-expanded generating 
function describing the particle motion in an arbitrary 
magnetic field are presented. The expansion parameters 
are the transverse momentum coordinates and the inverse 
of the bending radius at a reference point. The expansion 
converges vaery rapidly for large bending radii. It can be 
applied to any kind of magnetic field such as fringe fields of 
multipole magnets or undulator fields. Based on an ana- 
lytical representation of the magnetic vector potential this 
generating function is usefull for a fast and fully canonic.al 
tracking routine. 

1 INTRODUCTION 

In [l] a second order generating function for particles in 
magnetic fields has been derived and applied as a fast 
tracking routine across undulator fields. In that paper 
a vector potential that vanishes at the beginning and the 
end of the t:cansformation interval is assumed. This gener- 
ating function is applied to the field of a planar undulator, 
where the transversal vector potential is zero at the plane 
of the poles, limiting the step size to multiples of half a 
period length. Nagaoka et al. [z] derived a generating 
function for nonplanar insertion devices that allows arbi- 
trary step sizes by taking the transversal vector potential 
into account. This is of special interest for long period and 
strong field devices in low energy storage rings [3]. 

In this article we present the second order expansion 
of the generating function for an arbitrary magnetic field 
without any restrictions concerning the vector potential. 

The calculations in this article have been performed with 
the algebraic code REDUCE [4]. 

2 THE ALGEBRAIC MAP 

The particle motion in the magnetic field is described by 
an algebraic map over a finite integration interval z. First 
we derive a Taylor-expanded map in a fixed Cartesian co- 
ordinate system. The expansion parameters are the two 
transverse angle variables (z:, $) at the starting point of 
the transformation interval and a third variable zs, the 
inverse of the bending radius of the particle orbit taken at 
a reference point. This set of three expansion variables is 
rather unusual, but as shown in [l] they could form a fast 
converging lseries which does, at low order, already include 
effects of higer order multipoles. 

The general form of a Taylor expanded map along the 
L axis with respect to the variables 2: , d and zs has the 
form: 

x =: zi $ 2 2: + x aklm ’ L?ik ’ y;’ . z!J (1) 
k,l,m 

2’ _. a( + C aLlrn . xi” . yi’ . z? (2) 
k,l,m 

.p - 1 Uilrn . z;” . yf . zy (3) 
k,l,m 

-. Y - y; + z y,’ t E bkIrn .z:” yy 27 (4) 
k,l,m 

y' = y,! + c b;,, . zik . y;’ . zr 
k,l,m 

(5) 

y" = x b;,, xik . y;’ . 27 
k,l,m 

(6) 

Derivatives with respect to the longitudinal coordinate z 
are indicated by a prime. The inital transverse particle 
coordinates z , 2’ , y and y’ are indicated by an index 
i. We exclude any coupling of the two transverse planes 
where the magnetic field is switched off (2s = 0); in this 
case we obtain just the drift transformation. In second 
order theindices k,l,m are restricted to 1 2 Ic+l+m. < 2. 
The coefficents a,&,, and bklm need to be calculated. They 
depend on the position coordinates at the starting point, 
on the longitudinal position t and on the geometric shape 
l? of the vector potential. 

The shape function 2, the expansion variable 23, the 
magnetic vector potential A’ and the magnetic rigidity of 
the particle (Bp) are connected by the relation: 

R’* x3 -= mb); 

g.zs is dimensionless, and the expansion converges rapidly 
if this expression is small. The parameter ~3 can be in- 
terpreted as the inverse of the bending radius at some ref- 
erence point (~0, yo,zo), scaling with the strength of the 
vector potential, whereas the function R’ is independent 
of the strength and describes the geometric shape of the 
magnetic vector potential. 

The Taylor series expansion of the three components of 
the shape function around the starting position coordi- 
nates zi,K has the form (U = z,y or z): 

R” = x R:,npo . (2 - zip . (y - y;)“‘/(n1! t nz!) 
fll,nl 
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The .z dependent coefficients 

RE,mna = Bnl+n.+nrRu/BxnlynltnS 

are evaluated at the position (8 = Zi, y = ~/i, z). Later 
we will need the functions R&t,s which are the deriva- 
tives of the shape function Rxl,,,n3 at the point z = 0. 
The transverse coordinates z and y are defined by Eq.1 
and Eq.4. A multipole expansion of the shape function 
with respect to 2:; and yi is not necessary. We keep the 
functional dependence of the shape function on the initial 
particle position. This improves the overall convergence 
of the series. In this way an expansion with only three 
parameters is possible. 

The magnetic field follows from the shape function by: 

$Bp = z3. rot(@) 

Inserting the Taylor series expansion of the shape function 
R’ we get an expansion for the magnetic field. 

Now we insert this field expansion as well as the coor- 
dinate expansion given by Eq.2,3,5,6 into the equations of 
motion for a part.icle in a Cartesian coordinate system [5]: 

2” _. J-. [y’B, - (1 + z’~)B, + z’y’B,]/(Bp) 

y” = -J-. [x’B, - (1 + d2)B, + z’dB,]/(Bp) 

J-- = J1-+x’2+y’? 

Comparing the coefficients of products of equal order 
formed by xi, d, 23 yields a set of equations from which 
the coefficients a,krm and bkl,,, can be determined in a re- 
cursive way. In second order the second derivatives of the 
coefficients have the values: 

ugol = --(KTOl - %o) 
b &l = .- (GO1 - R&o) 
ato = .-(a001 . RYol - ~001 * GOO 

-f%o, . Go - bbo, * Rf;oo 

i-boo1 . R&, - boo1 . Rf,,) 

b b’o2 = la001 . Rflo - aool . GO1 

+R&o + do1 - R:,, . do1 

-boor + RY,,, + boo, . Go 

ub’11 = -(z . R;,, - 2 . GIO + Go - R:oo) 
b b’ll = 4%. (Ri,, - G20)) 

ayol = 4% . (Go, - R;oo)) 
b I, 101 = t . Rf,, - z . R:,, + R;;,, - R:,, 

The coefficients akr,,, and bkl,,, are obtained by integrating 
twice along the z-axis over the step length z. The trans- 
formation: 

(%+i,Yi) ===+ (2jt+YjllY;) 

is now well defined and these four equations form a second 
order map between the inital and final particle coordinates. 

In the presentation of the coefficients we see that the 
order k + 1 + 7n of the coefficients on left hand side is 

larger than the order on the right hand side. This is a 
general property of the expansion and allows the recursive 
calculation of the coefficients. The reason of this property 
can be seen in the equation of motion, where x” and I/’ 
are at least proportional to the expansion variable 2s. 

Suppose we would expand the particle coordinates z and 
y with respect to the more common set of expansion vari- 
ables zi,z:,s,d 

x . ._ xi + z . X: + x ailmn . xf . xi’ . yy . y:” 
k&own 

Y = yi + z . y; + x b;,,, . a$ zI’ . yr . y:” 
kJ,m,n 

and further expand the equations of motion to the same 
basis. Then the equations for the determination of the co- 
efficients ailmn and b;,,,, are complicated coupled differ- 
ential equations which in general can not be solved analyt- 
ically. This stresses the importance of the three parameter 
expansion we use in this article that results in a recursion 
procedure that can be solved much more easily. Also, the 
three variable expansion requires fewer coefficents to \J? 

defined. 

3 THE GENERATING FUNCTION 

To derive the generating function we change the carte- 
Sian coordinates (2, z’, y, Y’) into canonical variables 

(PI PZ, PYl PY) as fcaJws: 

px = 2 

px = A’/(Bp) + d/d- 

PY = Y 

PY= Ay/(Bp) + y//d-. 

The two transverse expansion variables are now the canon- 
ical momenta Pz and py. In the further calculation we 
express the vector potential A via its shape function R as 
defined above. 

At the starting point of the integration interval the vec- 
tor l? is given by the initial position coordinates @ = 
ii(Xi,yi,% = 0). At the endpoint of the transformation 
interval we use the Taylor series expansion of the shape 
function which has already been defined. 

We obtain now a transformation: 

which will be expanded with respect to pzi, pyi, 23. An 
inversion of the series and an expansion with respect to 
pzt , PY~, zs yields the implicit transformations: 

(~~i~P~f~Wi~PYj) * (Ft,Pzi,qYj,PYi) 

with expressions of the type: 

PZ f = ~Q.,wPx; TY; 

pi =E Pe,kl * P$ PYfr 
k,l 

and similarly for qyf and py;. 
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In second order the expansion coefficients Q8,klr Qy,kl, 
P z,kl and Py,kl have the form: 

Q a,00 = $8 2 . (%” * R&, . R:,, + z2 . R;,, . RI,, 

--t . R&, . i;,,, - z . Rf,, . izool - abol . tilol 
--R;,, . ho1 -bb,, +?LOII - R:,, .iioll + 5002) 

+23 * f-(2 . R&o) + 2001) + qzi 

Q rc,lO = --(~a . (z” . R’Eoo - &ol) - z) 

Q a,01 = -4~s . (z” . R&o - iion)) 

Q y,oo = ac; (2” . RF,, . R:,, + z2 . R;,, . R;,, 

--z . R:,, . fiool - .z . R;,, . iool - abol . ~,,, 

--R;;,, + i; 101 - bbol . i 011 - R&o. 6011 + 6002) 
-tz3 . (-(% * &,) + 5001) + qyi 

Q y,lO = --(q. (z” . R:,, - ho,)) 

Q y,Ol = --(z3 . (z” . R;,, - ~011) - 2) 

P z,oo = a:$ . (z . R;;,, . R;,, + z . R;,, . RF,, 

--R&o . ~OOI + u:ol . &l + &,I . R&o 

-t&l - bbol + &l . R:,, - 402 - Rt,, . good 
-tzs . (-ubol - R;,, + R:;,) 

P 2,lO = --(ES . (z . R;,, + uiol) - 1) 

P a,01 = --(2s . (% . R&J + U&l)) 
P y,oo = a:; . (z . R:,, . R;,, + z . Rfloo ’ R;,, 

--R;,, - EOOI + &l . b:,, + R&o . b:,, 

-tbbo, . bb,l + R&, . b&l - bb,,, - R&o . pool) 

-t-z3 * (-bb,, - R;,, + R;:,) 

P y,to = -423 - 1% - R:,, + b:,,)) 

P y,Ol = --(es. (z . R;,, + bbll) - 1) 

with the abbreviation &I,,, = ak[,,, - z. akl, and similarly 
for ik[m. At this point we could recombine the products 

QK,t-+.¶t, to terms AEl,,,ns /Bp and become independent 
of the definition of 23. 

From the generating function F(qz<, q?/ir pzf, m,) ex- 
tact canonical transformations are obtained: 

4x5 E 8F/8pz, Pi G BF/Bqzi 
qyt zs BF/Bpy, pyi G %FjBqyi. 

using the co~efficients Qz,klr Qy,k[, P=,k?,kl and Py,kl we con- 
struct the foIllowing generating function: 

F = Foe + FIO .pzf + FOI .pyf + 

Fzo.P~~+I"~~.P~,.PY~+Fo~.~~ 

Foe = 
/ PE*OOdqzi + d(q;Yi) 

Flo = Q.,oo Fat = Qy,oo 
Fzo = Qm,lo Fll = Qqol 
Fo2 = Qy,ol 

s(qy;) is an integration constant that is choosen such that 
SFoo/bYi = P~,oo. The way of determining the parame- 
ters Fij is not unique. But the result is always the same, 

if the function iis consistent with the Maxwell equations. 
This can be checked by the following relations: 

8Pm,oo/h = ~Py,oo/~qzi 

BQe.,oo/&zi = Pat,10 + O(2) 

~Q.,oo/bYi = Py,10 + O(2) 
~Qy,oo/fbi = Pn,01 + O(2) 
~Qy,oo/bYi = Py,01 + O(2) 

Q a,01 = Qy,lo 

O(2) are expressions of the order 2 and more in the expan- 
sion parameter 23, 

The partial derivatives of this generating function yield 
a canonical transformation, which, in second order, is iden- 
tical to the transformation derived above; but additionally 
higher order terms appear. 

For a given magnetic field the vector pot:ntial A’is well 
defined apart from a rotation free vector P. We checked 
the results above for a transformation A’ a A’+ P’ with 
tot(?) = 0. From the canonical transformation above 
we can derive a Taylor expanded transformation of the 
Cartesian coordinates with the expansion parameters zj, 
d and 23. It turns out that the transformation of the 
Cartesian coordinates is affected by the transformation of 
the vector potential only in third and higher orders in the 
parameters z:, y;! and 23. 

4 CONCLUSION 

We derived the second order generating function for the 
transformation of a charged particle through a magnetic 
field. In principle the method can be expanded to higher 
orders. But the formulas are getting quite long even in 
third order. We demonstrated that the choice of the ex- 
pansion parameters is essential. The equations of motion 
can be integrated in a recursive way when we use the two 
transverse momenta and the inverse of a bending radius 
as expansion parameters. 
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