
655 

Theory of the Beta Function Shift Due to Linear Coupling* 

G. Parzen 

Brookhaven National Laboratory 
Upton, NY 11973, USA 

Abstract 

This paper presents analytical perturbation theory results 
for PI, 82, the beta functions in the presence of linear 
coupling. 

1 INTRODUCTION 
This paper presents analytical perturbation theory results 
for ,O1,&, the beta functions in the presence of linear 
coupling. It is a continuation of a previous paper’ that, 
gave analytical perturbation theory results for the tune 
vl, v2 in the presence of linear coupling. The results for 
0,. /I2 hold when v,, vY are close to the resonance line 

VI - v,, = p. The shift in beta functions is then linear in 
the skew quadrupole field givcan by nl (s). When u,, vY 
are far enough from the V, - zfV = p resonance, then the 
shift in the beta function becomes quadratic in the skrw 
quadrupolr field. 

The analytical results show that the important har- 
monics in the skew quadrupole fields for producing large 
beta funrf.ions shifts are the harmonics near V, + v,,. The 
harmonics near V, + vY are also the important harmon- 
ics for the higher order tune (see Ref. 1). It is also 
shown that the beta function shift, and the higher order 
tunr shift have, thr same driving terms. thus, onr may ex- 
pect that an ‘11 correction system that corrects the higher 
order turif~ shift will also correct the het,a function shift. 

2 LOWEST ORDER SOLUTION FOR l&,/j7 
The presence of t.ht% skew quadrupole fields will couple 
the L and y motions. New beta functions, PI,& can he 
defined2 which arf: the heta functions of the normal modes 
and which are different from /3z,/3yT the beta functions of 
the unpcrt8urbed accelerator. 

It will be shown below that /Y1 and g2 can be found 
from the solutions of the equations of mot,ions, Eq. (2.1) 
in referencca I. These solutions were written there as 

qr = c, + Cl, qy = cy + c; 

i, = A, exp (k,,Q,) + c A, exp (~~~,r~z), 
r#s 

Cy = B, exp (ivy .,e,) + z & exp (i~,,~e,), 
728 

ur,s - uy,s = P 

(2.1) 
cl is the complex. conjugate of c,. 

The lowrst order solution for thr A,., H, are given by 
Eq. (2.7) R.rf. I, which can be put into Eq. (2.1) to 
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find c,, c,. The first two equations in Eq. (2.7), Ref. 
1 show that the two large coefficients A,, B, are related. 
For the ~1 mode, where ~1 --+ V, when a1 -+ 0, and using 
u, s 25 u, one finds 

-(h -vz) 
B3 = Au (I+,$, v~,~) ‘I’ 

For the v2 mode, using v~,~ = vy, one finds 

A, = 
- (4 - Yy) 

Au* tuz,,, +s) 
B, (2.26) 

Au (vz,, , uy,s ) is defined by Eq. (2.8), Ref. 1. 
The last two equations of Eq. (2.7)) Ref. 1, can be 

solved for A, and R,, which can then be put into Eq. 
(2.1) to find the Floquet solutions. Note that A, # 0 

only for v,,Y = vY,s + n, n # p, and B, # 0 only for 

UY ,r = “,,a + n, n # -p. Assuming that u,,vY is close to 
the resonance line yz,$ = v~,~ + p, so that v,,, N v,, and 
I/~,~ N v,,: then 

A 
T 

= -2~s bz (v,,, , +,I B 

(n + vy,J2 - I/,” d 

-2v, br (G;, , vy,s) 
“I’ = (fl + U= + vy j (71 - p) I” 

(2.3) 

where n # p, y,,, = vy,S + n and b, is defined by Eq. 
(2.6). Ref. 1. 

Similarly, one finds for B, 

B 
r 

= -2% by (%‘. %:) A 

(n + u,,,)2 - uyz s 

B, = i;+,b;t;;;(;;;, -4, 

(2.4) 

where n # -p, LJ~,~ = u,,, + n 

We can now find (, for the u1 mode using Eqs. (2.3) 
and (2.2a) for A, and putting these results into Eq. (2.1) 
for C,, 

c, = n,e’“18= 

{ 1 

1 + c fn 
nf-P 

2vz bn exp [-i (n + P) @,I (2.5) 

(n - vz - “y) (n + PI 

J 
d3 ~~(&~~)*exp[i((n - UY)~Z tVy@y)l 
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A similar result can be found for c, for the LQ modr From Eq. (2.11) one finds 

c, = u.,c’1’A8y 
{ 1 

1 + c gn 
n#P 

v2 - vy 2vy cn exp[-i (n - p) &] 

g” = nv’i v~,~,v~,~) (~-v~-vY)(~--PP) 

(2.6) 

1 
_ c” = .*xp al (t%Dy)fexp[:((n - VI)@, + h&)] 

Front the above Floquet, solutions for i,,c,, one can find 
i?, and $2 ~,he beta functions of the normal modes. This 
will bc don<, below. It ~ttay bc noted that b,, and c,, are 
just tht, irrtrgrals involved in computing the stopbands of 
vr + vy -= rl sum resonance, but at certain choices of the 
V-valur~ on thr r<‘sonance line. The b,, corresponds to the 
tune choice n - vY, vy , and c,, to V, , n - V, The resonance 
denominator 1/ (n - yr - v,,) shows that the important n 
is near v, + vY. 

‘1’11~ r motion given by z = ,L?J’” (CT + iz) is the 

x-motion when only the ~1 mode is excited. Similarly, 
112 y = & i’cy + c;) is the y motion when only the ~2 

rrlodc is r:xc:itpd 

Results for /Jl and ,& 

It was shown by Edwards and Teng’ that one can 

transform from the T, T’, y, y’ coordinat,es to a new set of 
coordinates 11, tl’u, u’ which are uncoupled. The solutions 
of equat,ions of motions for IL and zt can be written as2 

21 = &exp (iu’,l) + C.C. 

IL = &exp (i$!?) + C.C. 
(2.7) 

01 and 132 arc periodic functions and are the beta functions 
111 the pr(:s(‘ticP of linear coupling. If IIO solenoids are 
present, the +, and d 2 are related to 01, p? by* 

l/i31 = dJl,/dS 

l/o2 = d&Ids 
(2.8) 

~1 and ~2 are two constants that, turn out to be the 
emittances of rach normal mode. 

‘I’hc, T, L’, y! y’ and the II, I>‘, u, 2~’ coordinates are 
rclatrtl hy2 

1: = RI) (2.9) 

where R 1s a 4 x 4 matrix given by 

Ii! = 
( 

I cos ‘9 Dsin ;p 
-13sinp Icoscp > 

(2.10) 

I> and 75 arc 2 x 2 matrices, and u = D-‘. I is the 2 x 2 
identity matrix. D and p can be rornputrd frorn the one 
turn transff,r matrix.’ 

Let I), 11’ be the coordinates that have the tune ~1 
where ~1 -+ v, when al --t 0. Then if only this mode is 
present, t.hcn P is given by 

x = cosp 11 (2.11) 

coscp~exp (hh) = x/m, (2.12) 

where c, is given by Eq. (2.5). It follows that 

,Y1 = dq/ds 

C, = I<, 1 exp (iyi) 
(2.13) 

and Jj can be found from E:q. (2.5) 

il (2.14) 

nf-P 

1 d4 VI 
-=ds 81 

= - + --!-- C t-n -PI (hi + AT) 
y.T 8z &P, 

nf-P 

Using I/& - l//3= 2 - (,Ol - $=) /pz one finds 

81 - Bz ---z-y- x -(f”+f,)(2.15) or 2Vr 
n#-p 

Vl - vz bn 
Av(v,,v, -pt n - vz - vy 

exp [-i (n + p) B,] + C.C.} 

In a similar way, one also finds 

!??zsLIjy- v2 - vy cn 

0, Av’ (Q + p, ~2) n - vz - vy 

exp [-i (n - p) C?,] + c.c. 
> 

(2.16) 

(2.17) 

Eq. (2.16) can be written in an int,egral form by 
using the result 

Ix 
exp [inlo - 0'11 = -Texp (+irV)eiy(8-8j) (2,18) 

all 73 
n-u sin 7rv 
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where the top sign is used for 0 > B’, and the bottom sign where the index k indicates the different types of magnets. 
for 0 < 8’. Replacing b,, using Eq. (2.5) one finds NI. is t,he number of rnagncts of a certain type. Eq (2.19) 

81 - ?z (VI - yz) 1 also gives the result for ((& - &) /&),,,, One also WCS 

~ =-jAv(ul,v1 --)I’tpsinx(V, +vy) PI that 

x J ds’ a1 (3’) (b’, (3’) Py (3’))’ ((al - A) /iax),,,, = [4x/ (2.8 sin K (v, + vy))] Au,,, (2.21) 

c”s[rtn(y*+Vy)-((Yr+“y)(er-e:) 

SYy (8: - 0:) -P& - 611 
(2.19a) where Av,,, is the rms value of Av 

61 = phase [AU (VI 1 VI - r,,]? and in the f sigu. the + sign 
is used for 0 > f?‘, and the - sign for 0 < 0’. 

In a similar way one can find (/3x - fk,) /l$ as 

P2 - BY (Q - +I 1 - = -. 
PY In~(v2+~,v2)12psinrr(u,+Yy) 

X J ds’ al (3’) (A (3’) By (3’))’ 

ICOS [h (vz + uy ) - (I.% + vy) (e, - 8;) 

+l&-e;)+pBy+62] 
(2.19b) 

b2 = phase [AU ( vz + p, vz)], 
Eq. (2.16) shows that the important harmonics in 

al arc thr harnlonics near V, + Y,,. However, Eq. (2.16) 
shows that the dominant harmonic excited in ,& due 
to the al field is the 21/, harmonic, and in $2 the 2~~ 
harmonic. 

One may note the factor (~1 - v,)/Av. Close to the 
resonance lint> vcr = vY + p where IAvi >> Iv, - vY - ~~1, 
then this factor approaches 1. This may be seen from 
Eq. (2.10) in Ref. 1 for ~1 and ~2, According to Eq. 
(2.10), Hef 1; (u1 - v,) liAul - 1 for large Av, and 
(v~ - v,) /l&l Iv 2(Avl/jv, - vY/ for small enough Av. 
Thus (;3, - 13,) ,/i3, is hncar in ai for large: enough Au, 

u,> vY close enough t,o the resonance line, and quadratic 
in aI for srrdl enough Av, far enough from t.he resonancr 
line. For small #enough AU where (/31 - 4,) l/j’= becomes 
quadrat,ic in al, then Eq. (2.16) is no longer correct 
because of the neglect of a; terms in deriving it. 

A result for the rms value of (@I - &)/I?~ due to 
a random distribution of ai errors may be obtained 
from the inttlgral form Eq. (2.19), for thr case when 
IAYI >> IV, - vy - pi. In this cas(‘ IV, - v, l/lA~l Z 1 and 

(2.20) 

6 - PC 

( > 32-- 

= N;12 (h4J) ( 112 
al>rms k > 

k.rms 2.8psinn(v, + VY) 

3 CORRECTION OF PI,/& 

The above analytical results for thr beta function shifk 
show that when the higher order tune shifts ~1 - vZ and 
~2 - v,, are correct,ed, then the bet,a function shifts arc 
also corrected. This can be seen by comparing Eq. (2.5) 
for the beta function shift with Eq. (3.2 and 3.3) in Ref. 
1, for the higher order tune shift. Both these effects have 
the same driving terms b, and c,, and for both effects the 
important b,, c, are those for which n is close to V, + v,, 

This result has been observed in numerical compu- 
tations for the RHIC accelerator, where an a1 correction 
system has been provided to correct the higher order tune 
shift.4t5 In order to correct the shift in the beta functions 
it is important that in correcting the higher order tune 
shift, that one correct not only the tune splitting 1~1 - ~21 
but also the shift in the average tune (~1 + vz)/2. ‘I’hc 
harmonic closest to V, + v,, do not have much effect on 

Iv1 - ~21 but arr most important for the average tunca 
(v, + ~2) /2, and also for the beta function shift. One 
niight be able to corrrct thr average tune (~1 + ~2) /2 
using the normal tune adjust,ing quadrupolcs instead of 
the al correctors, but this would not help to correct thP 
beta function shift.. 
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