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Theory of the Beta Function Shift Due to Linear Coupling*
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Abstract

This paper presents analytical perturbation theory results
for 31,3, the beta functions in the presence of linear
coupling.

1 INTRODUCTION

This paper presents analytical perturbation theory results
for B, 32, the beta functions in the presence of linear
coupling. It is a continuation of a previous paper! that
gave analytical perturbation theory results for the tune
v1, 2 in the presence of linear coupling. The results for
31,8 hold when v, vy are close to the resonance lne
vy — vy = p. The shift in beta functions is then linear in
the skew quadrupole field given by a, (s). When v;,v,
are far enough from the v, — v, = p resonance, then the
shift in the beta function becomes quadratic in the skew
quadrupole field.

The analytical results show that the inportant har-
monics in the skew quadrupole fields for producing large
beta functions shifts are the harmonics near vz + vy The
harmonics near v, + v, are also the important harmon-
ics for the higher order tune (see Ref. 1). It is also
shown that the beta function shift and the higher order
tune shift have the same driving terms, thus, one may ex-
pect that an a; correction system that corrects the higher
order tune shift will also correct the beta function shift.

2 LOWEST ORDER SOLUTION FOR 3, 3,

The presence of the skew quadrupole fields will couple
the r and y motions. New beta functions, 5,0y can be
defined? which are the beta functions of the normal modes
and which are diflerent from B;, 4,, the beta functions of
the unperturbed accelerator.

It will be shown below that 3; and 35 can be found
from the solutions of the equations of motions, Eq. (2.1}
in reference 1. These solutions were written there as

N = +C;, Ty :Cy +<;

(o = A, exp(ivg 40.) + Z A exp (ivz - 0z),
s

C, = Byexp(ivy .0:) + ) Brexp(ivyc0y),
r#s

Vrs—Uys =P
(2.1)
¢ is the complex conjugate of €.

The lowest order solution for the A,, B, are given by
Eq. (2.7) Ref 1, which can be put into Eq. (2.1) to
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find Cx,Cy. The first two equations in Eq. (2.7), Ref.
1 show that the two large coefficients A,, B, are related.
For the v; mode, where v; — v, when a; — 0, and using
vy s = v, one finds

B, = - (vy — vs)

= m/&, . (22(1)

For the v; mode, using vy, =~ vy, one finds

_ () 9 o
A, = A o sty s) B, . (2.26)
Av (v 4, vy ) is defined by Eq. (2.8), Ref. 1.

The last two equations of Eq. (2.7), Ref. 1, can be
solved for A, and B,, which can then be put into Egq.
(2.1) to find the Floquet solutions. Note that A, # 0
only for vzy = vy, +n, n# p, and B, # 0 only for
Vyr = Vg, + 10, n# —p. Assuming that v,y is close to
the resonance line vy, = vy, -+ p, so that v; , ~ v, and
vy s = by, then

—2u; by (V.r,r f Vy,s)

(n+ Vy,S)Q - vl

(2.3)
—Qyz br (Vr,r, Vy,s)

A, = .
(n+Vr+Vy)(.n-p) )

where n # p, v, = vy, +n and b; is defined by Eq.
(2.6), Ref. 1.
Similarly, one finds for B,

=y by (vy e )

B, =
' (n + Vx‘a)Q - Vyz

(2.4)
~ 20y by (Vy,r, Ve,s)
(n+ve+vy)(n+p)

r = s

where n # —p, vy, = Uz, +n

We can now find ¢, for the v mode using Eqs. (2.3)
and (2.2a) for A, and putting these results into Eq. (2.1)
for ¢,

Cx —'—'Aaeiulex 1+ Z fn

ng-p

vy — vz

2ur by exp[—i(n + p) 8]

Jn = (n—vs—vy)(n +p)

Av (Vx‘s‘l’y,s)

bn = Z—};/ds ay (ﬂxﬂy)%exp[i ((n ~ vy} 0z + vyby)]
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A similar result can be found for Cy for the vy mode

=B 143 gn
n#p
o = 1y - vy 2wy cn exp[—i(n — p)by] (2.6)

T Avt(vrs,vys)  (n- e~ wy)(n—p)

o

tn = bhlr—p /ds a1 (BzBy) 7 exp[i((n — vz) 8y + ve6:)]

From the above Floquet solutions for Cx,Cy, one can find
3, and 35 the beta functions of the normal modes. This
will be done below. It may be noted that b, and ¢, are
Jjust the integrals involved in computing the stopbands of
vz + vy, = n sum resonance, but at certain choices of the
v-values on the resonance line. The b, corresponds to the
tune choice n—vy, vy, and ¢, to vy, n—v,. The resonance
denominator 1/ (n — v, — v, ) shows that the important n
is near v + vy,

The r motion given by z =

Il/:' (C, + C;) 15 the
z-motion when only the vy mode is excited. Similarly,

1/2

y = By (Cy +4;) is the y motion when only the v,

mode 1s excited.

Results for 3y and 3,

It was shown by Edwards and Teng? that one can
transform from the z,z’ y,y' coordinates to a new set of
coordinates v, v'u, v’ which are uncoupled. The solutions

of equations of motions for u and v can be written as?

v=+\/Brerexp (i) + c.c.
161 exp (1) 27)

u = \/Breqexp (1y2) + c.c.

) and 3y are periodic functions and are the beta functions
m the presence of linear coupling. If no solenoids are
present, the v, and ¢4 are related to 3, f» by®

1/[31 = ddvl/ds
1/8y = dipp/ds

¢; and €; are two constants that turn out to be the
emittances of each normal mode.
The z,z',y,y’ and the v,v’ u,u’ coordinates are
9
related by*

(2.8)

r = Rv (2.9)
where R is a 4 X 4 matrix given by
_ Icosp Dsing
k= (-Dsingo ]cos<p) (2.10)

D and D are 2 x 2 matrices, and D = D™'. [is the 2x 2
identity matrix. [ and ¢ can be computed from the one
turn transfer matrix.?

Let v,v’ be the coordinates that have the tune 1
where vy — v, when a; — 0. Then if only this mode is
present then z 1s given by

(2.11)

T = cosp v

From Eq. (2.11) one finds

cos v/ Brerexp (i) = NI A (2.12)
where (; is given by Eq. (2.5). It follows that
B = dy/ds
= v/ y (2.13)
Co = [Calexp (iw) -
and ¥ can be found from Eq. (2.5).
Co=Asexp(ivib:) [ 14+ > fa
ng-p
1 -
Cr:As 1+’2'Z(fn+fn)
ng-p
. 1 .
exp (¢ | »16: + 5 Z (fn - fn) (2.14)
ng—p
1 "
v=nbet = Y (o f3)
n#-p
I dy v 1 o "
BT g a2 )
n#¥—p
Using 1/, ~ 1/8: ~ — (81 — B:) /82 one finds
B~ B vi—wvr (=n—p) .
= ) o (et S (215)
ng-p
1= Br - vy — Vg bn
Be “"‘%{Au(ul,ul—p)n—ur—ug
exp [~t(n + p) 0,]+c.c‘} . (2.16)
In a similar way, one also finds
B2—8y _ vy — vy cn
By - Z {Au‘ (va+p,v2)n—vr — vy
all n (2.17)
exp[—t(n — p)by] + c.c} .
Eq. (2.16) can be written in an integral form by

using the result

_WCXP-(:F”"V) v (8-0")
sin wv

(2.18)

Z exp [in (8 — 0')] -
all n o



where the top sign is used for 8 > 6', and the bottom sign
for 8 < 8. Replacing b, using Eq. (2.5) one finds

f1— B _ (ry —vz) 1

Bz T lavivy, v —p)| 2psin T (vz + vy)
[ 4 an () (8 () 8 ()

cos [:hvr (v +vy) — (vr + vy) (02 - 0;)

+uy (0; ~9;,) — plz —61] .
(2.19a)
6, = phase [Av (vy, v, — p)], and in the £ sign, the + sign
is used for # > #', and the — sign for 8 < 6.
In a similar way one can find (32 — 8,) /By as

B2 — By _ (va = vy) 1

By T lAv (vg +p,va)| 2osin T (vr + vy)
* / ds' ar (") (B2 () By ()

cos [iw(u: + vy} = (vz + vy} (gy - 9;)

+ur (6 — 6,) + pby + 82 .
(2.19b)
6, = phase [Av (v2 + p,v2))].

Eq. (2.16) shows that the important harmonics in
a, are the harmonics near v; + v,. However, Eq. (2.16)
shows that the dominant harmonic excited in B; due
to the a; field is the 2v, harmonic, and in F; the 2uy
harmonic.

One may note the factor (vy — v;) fAr. Close to the
resonance line v, = vy + p where |Av| >> |vp — vy — 1],
then this factor approaches 1. This may be seen from
Eq. (2.10) in Ref. 1 for vy and 5. According to Eq.
(2.10), Ref. 1, (v; —v;)/lAv| — 1 for large Av, and
(vy — ) /1Av] ~ 2|Av|/lvy — vy| for small enough Av.
Thus (3, — B:) /3, is linear in a; for large enough Ay,
vg, vy close enough to the resonance line, and quadratic
in a; for small enough Av, far enough from the resonance
line. For small enough Av where (8 — B;) /8- becomes
quadratic in a;, then Eq. (2.16) is no longer correct
because of the neglect of a? terms in deriving it.

A result for the rms value of (8 — 8;)/3; due to
a random distribution of a; errors may be obtained
from the integral form Eq. (2.19), for the case when
|Av| >> |vp ~ vy — p|. In this case |v) — ve|/|Av| = 1 and

(m -5\ 5 (!3 —~ﬂr)2
ﬁ" / rms k [31' k,rms

(2.20)

1/2
,Bl - Br . N1/2 ((Bxﬁy) Cl])rms)’c
ﬁ‘r k,rms ok 2-8psin7r(ux + ,/y)
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where the index k indicates the different types of magnets.
Ny is the number of magnets of a certain type. Eq. (2.19)
also gives the result for ((32 — 8y) /By),,.,- One also sces
that

((B1 — Bx) [ Bx) pms = [47/ (2.8sinx (vx + vy))] Avrms  (2.21)

where Avyme 15 the rms value of Av.

3 CORRECTION OF 3,4,

The above analytical results for the beta function shifts
show that when the higher order tune shifts v; — v, and
vy — vy are corrected, then the beta function shifts are
also corrected. This can be seen by comparing Eq. (2.5)
for the beta function shift with Eq. (3.2 and 3.3) in Ref
1, for the higher order tune shift. Both these effects have
the same driving terms b, and ¢,, and for both effects the
important b,, ¢, are those for which n is close to v + vy

This result has been observed in numerical compu-
tations® for the RHIC accelerator, where an a; correction
system has been provided to correct the higher order tune
shift.%3 In order to correct the shift in the beta functions
it is important that in correcting the higher order tune
shift, that one correct not only the tune splitting Jen — 19|
but also the shift in the average tune (17 + v2) /2. The
harmonic closest to vz + v, do not have much effect on
[y — va| but are most important for the average tune
(v1 + 1) /2, and also for the beta function shift. One
might be able to correct the average tune (v +v2)/2
using the normal tune adjusting quadrupoles instead of
the a; correctors, but this would not help to correct the
beta function shift.
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