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Abstract 

The nonlinear beam dynamics of transverse betatron os- 
cillations have been studied experimentally at the IUCF 
Cooler Ring. Motion in one dimension was measured 
for betatron tunes near the third integer resonance. The 
Hamiltonian for nonlinear particle motion near the third 
integer resonance has been experimentally deduced and is 
compared with the results from a simple model. 

1 INTRODUCTION 

Nonlinear magnetic fields in an accelerator can produce 
limiting dynamic aperatures, but they have also been 
found useful in applications such as slow extraction of 
beam from a high energy accelerator, or for beam manip- 
ulations in phase space [I]. Theoretical studies[2] of non- 
linear fields have been used to predict both the long and 
the short, term behavior of orbiting particles in an accel- 
erator and #several nonlinear beam dynamics experiments 
have been performed in the past[3]. 

Since individual particle motion cannot be tracked ex- 
perimentall,y, these studies typically track the motion of 
the beam centroid after collectively perturbing the beam. 
The degree to which the beam motion accurately repre- 
sents the motion of a single particle is a function of the 
emittance of the beam; the smaller the emittance of the 
beam, the more accurate its representation of single parti- 
cle motion. In this respect, the ICCF Cooler Ring provides 
an ideal environment for nonlinear beam dynamics exper- 
iments. The 95% emittance, or phase space area, of the 
proton beam is electron-cooled to about 0.3 n mm-mrad 
with a resulting relative momentum spread for the beam 
of about &O.OOOl. 

This article describes a nonlinear beam dynamics exper- 
iment performed at the IUCF Cooler Ring, in which par- 
ticle motion near the third integer resonance was studied. 
The experimental methods used in this study are described 
in Section II. The data and the analysis are discussed in 
Section III, where we determine the Hamiltonian for the 
particle motion near the third integer resonance. Section 
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IV contains a summary and concluding remarks. 

2 EXPERIMENTAL METHODS 

The IUCF Cooler Ring is hexagonal with a circumference 
of 86.82 m. The experiment was done with a stored 45 
MeV proton beam, injected in a 10 s cycle. The stored 
beam consisted of a single bunch, typically with 3 x 10” 
protons and a bunch length of about 3.6 m (or 40 ns) full 
width at half maximum, FWHM. The revolution period 
in the accelerator was 969 ns with bunching produced by 
operating an rf cavity with frequency 1.03168 MHz at har- 
monic number, h = 1. The motion of the beam centroid 
was tracked using two beam position monitors, BPMs[5]. 
Each BPM measured the displacement of the beam from 
the stable closed orbit in the horizontal plane. Because 
the signals from the BPMs are only about 40 ns in dura- 
tion, digitization without further processing was deemed 
impractical. Instead, a peak detecting circuit was used in 
conjunction with a sample-and-hold circuit to produce an 
analog signal with a level proport,ional to the peak value 
of the amplified position, R, and intensity, C, signals. Fur- 
ther details on the analog electronics can be found in Ref. 

El. 
Once processed, R and C signals were digitized with 

a transient recorder having 8192 channels. However, the 
number of available transient recorders was limited which 
required that the R and C signals be multiplexed in each 
transient recorder. Thus only 4096 turns were tracked, 
with 512 of these turns occuring before the beam was 
kicked. 

To produce the coherent transverse motion; the beam 
was kicked with a pulsed magnetic kicker whose duration 
was about 500 ns. The kick occurred in conjunction with 
a triple coincidence between a signal from the data acqui- 
sition system. the rf system which was providing the beam 
bunching, and a seven second delay from the beginning of 
the injection cycle. Electron cooling has a very small effect 
in the time a measurement is made (4096 turns), neverthe- 
less it was turned off 20 ms before the beam was kicked 
to avoid any damping of the betatron oscillations by the 
electron cooling. 
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3 DATA AND ANALYSIS 

For particle motion in a circular accelerator, the horizontal 
deviation from the closed orbit, z, satisfies Hill’s equation: 

2 + K(s)z = % 
BP 

Here K(s) is a function of the quadrupole strength, Bp = 
p/e is the magnetjlc rigidity, and s is the longitudinal par- 
ticle coordinate, which advances from 0 to C, the circum- 
ference, as the particle completes one revolution of the 
cyclic accelerator. The anharmonic term, e,rk, which 
arises from higher order multipoles, coupling terms, or 
quadrupole and dipole errors, is normally small. Oscil- 
lations about the closed orbit due to the linear focussing 
force of quadrupoles, K(s), are called betatron oscillations. 
The number of oscillation periods in one revolution is the 
horizontal betatron tune, u,, which can be adjusted by 
varying the quadrupole strength within the accelerator. 
Both K(s) and the anharmonic term, e, are periodic 
functions of s witlb period C. 

Neglecting the small anharmonic term in the Hamilto- 
nian, the betatron motion is linear. Hill’s equation (Eqn. 
1) can be solved using the Floquet transformation[4] to 
obtain the solution 

2 = ~cos~, (2) 

where J and 4 are action-angle variables. Here 25 is the 
phase space area (called the Courant-Snyder invariant or 
the emittance) of the betatron motion and pz is the be- 
tatron amplitude function of the Floquet, transformation 
(4, is periodic in s with period C). After an appropriate 
canonical transformation, linear betatron oscillations ap- 
pear as circles in a PoincarC map. The deviations from a 
circle in a PoincarC map can be used to study the anhar- 
manic term of the Hamiltonian. 

The Poincare map deviates from a circle most strongly 
at a resonance. Particle motion around stable fixed points 
(a stable solution to the equation of motion) in phase space 
bounded by invariant surfaces may occur for nearly inte- 
grable Hamiltonian systems. These stable phase space el- 
lipses around fixed points, called islands, are separated by 
the unstable fixed points. The particle phase space tra- 
jectory passing through unstable tied points is called the 
separatrix. 

Motion near the third integer resonance at 3v, = 11 was 
studied. The available phase space, or dynamic aperature, 
was not large enough in the current study to allow the 
observation of arty stable fixed points beyond the one at 
the origin. Consequently, no island structure is observed in 
this case. However the effect of the nonlinearity on motion 
is easily seen. In Fig. 1 the Poincar& maps for five different 
kick amplitudes are shown. In this figure it can be seen 
that the largest kick has placed the beam just beyond the 
separatrix, and the beam intensity falls below detection 
threshold in about 70 turns after the kick. 

The lowest order nonlinear field error which can account 
for this motion can be found in the expansion of the vector 
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Figure 1: Poincari maps for motion near the third integer 
resonance for five different kicker amplitudes: 200, 300, 
400, 450, and 470 in arbitrary units, increasing kicker am- 
plitude corresponding to increasing large J contours. 

potential. In the median plane of the accelerator, the fields 
have a relatively simple expansion, 

A, =: x B!“)Z nt1 
n=O (n + l)! 

, (3) 

where n = 0 is the dipole term, n = 1 the quadrupole term, 
n = 2 the sextupole term, etc. When the sextupole term 
is placed in the Hill’s equation, motion similar to what is 
observed will result. 

It can be shown the Hill’s equation with a sextupole non- 
linear field term can be derived from the following Hamil- 
tonian, 

H = (2J;34/2F cos(3(4 + E)) - 2nJ6 (4) 

where 6 is the difference between the nearby third integer 
tune and the tune for particles with a betatron amplitude 
of zero, in this case 6 = Y, - 3g. The factors F and < are 
related to the strength and location of the sources of the 
third order nonlinearities 

The Hamiltonian of Eqn. 4 define contours of constant 
H in J-4 space. The data shown in Fig. 1 are plotted in 
J-4 space in Fig. 2. The solid lines drawn correspond to 
lines of constant H/F. The values of b/F and [ used in 
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Figure 2: The data from Fig. 1 shown in J-4 space. The Figure 2: The data from Fig. 1 shown in J-4 space. The 
contours shown are calculated using Eqn. 4. contours shown are calculated using Eqn. 4. 
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Figure 3: A plot of the measured tunes for data taken near 
the third integer tune, of which the data shown in Fig. 1 
is a subset. 

these calculations were determined empirically, the value 
of 6/F was --O.OFjOJ-m-mrad and the value of< was 0”. 
The uncertainity in this determination of S/F is estimated 
to be 5%. In Fig. 3 the tune shift for the data pictured 
in Fig. 1 is ahown. From this figure it can be seen that 
the value of 6 is -0.0060. From this and the empirically 
determined value of 6/F above, the experimental value of 
F can deduced to be about 120 m-i. 

Assuming that the third order resonance is driven by 
sextupole contributions only, the parameters F and ( in 
Eqn. 4 are given by 

Fe3iC = 
P 

(B(,))3/2~,3iu*)(~)ds (5) 

The value of F can be found by integrating the sextupole 
strengths for the different components of the ring. The 

major contributors of sextupole strength, S = e, are the 
chromaticity correcting sextupoles and the fringe fields of 
the 12 main dipole magnets. The expected contribution 
to the integral from the sextupole magnets has been eval- 
uated and has a magnitude of about 82 m-4. Assuming 
the sextupole strength at the ends of each dipole magnet, 
Sd! to be the same, then Eqn. 5 can be written for the 
current case as 

Fe3’f = 82m-:e-‘26a + Sd(20m:e+“090) (‘51 

The sextupole strength of the dipole magnets can be de- 
termined from the measured chromaticities, C, and C,. 
Using the program MAD, the value of S needed to pro- 
duce the measured chromaticities is deduced to be about 
0.4mVs. Thus the calculated value of F is 88 m-3 and ( is 
-10’. The discrepency of these calculated values from the 
experimental values is a topic of continuing investigation. 

4 CONCLUSION 

In conclusion, we have experimentally identified and mea- 
sured the properties of third order nonlinear motion of a 
beam bunch in an accelerator. The experimentally de- 
termined parameter F in the Hamiltonian is within 30% 
agreement with the value calculated from a simple model. 

Experimentally derived Hamiltonians, including addi- 
tional higher order terms, may allow more reliable pre- 
dictions of particle motion. These experimental nonlinear 
beam dynamics studies may prove to be useful in an effort 
to understand the dynamic aperture and the long term be- 
havior of particle motion for future colliders, such as the 
SSC and RHIC. 

We wish to thank Drs. S. Peggs and R. Talman for their 
helpful discussions. 
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