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Abstract 
In this article, observations and cures of instabilities are 
described. It is emphasized, that the most powerful cure 
of multi-bunch instabilities is an active damper system. 
The priciple mechanism of a damper system is discussed 
and recent observations are presented. 

1 INTRODUCTION 

Multi-bunch instabilities can arise if electromagnetic fields 
having a decay time greater than the bunch spacing time 
are excited by single bunch motions within the compo- 
nents of the vacuum chamber. The forces then generated 
affect all bunches, so that they are all coupled. Therefore, 
the total beam current is the quantity that determines the 
growth rates and - together with the Landau damping - 
also the thresholds and the beam intensity limits. The 
strength of the electromagnetic fields can be described in 
terms of the impedances distributed around the vacuum 
chamber. 
The single bunch motion is classified by internal modes. 
However, for sufliciently short bunches (proton bunches 
can be an exception) the dipole motion is most se- 
vere. Multi-bunch instabilities can become very strong 
in high energy electron machines. In these machines the 
impedance of the accelerating structure must be large, so 
that the level of t.he parasitic mode impedances is large as 
well. The parasitic modes then are the source of the strong 
multi-bunch instabilities limiting the beam currents far 
below design values. In order to demonstrate the meth- 
ods of observation and cures the discussion is restricted to 
dipole oscillations excited by localized impedances espe- 
cially in the case of electron machines. 

2 REVIEW OF THE THEORY 

The multi-bunch system can be described by a set of N 
differential equations, N being the bunch number (1): 

i F,(q”‘,zN-*) + Dp(i);p = 0,“‘N - 1 (1) 
In this equation, 1 and w are the time and the synchrotron 
frequency in the longitudinal, the quasi-time and the be- 
tatron frequency in the transverse direction. The forces in 
the ring are described by V, which is a linear functional of 
the dipole displacements z,, of the bunches. The forces F,, 
are added to take care of an active damper system, which 

will be discussed later. Finally Or(l) is an external force 
added in order to test the system by external excitation. 
Passing to the domain of complex frequencies w eq. (1) 
becomes: 

N-l 

Q(w);li(w) = z: (L(w) + i;y(w,j i, + B&J) (2) 
Lx=0 

with 
1 

c-l2 - (Iwo + ws” 
(3) 

wg being the revolution frequency. The Fourier transforms 
S*(W) etc.. are closely related to the z-transform of sam- 
pled data due to the fact that all exciting objects are lo- 
calized. The equation (2) can be diagonalized in terms of 
the “normal mode” vectors: 

e2r iv wlNw, 
(4) 

leading to the complex eigenfrequencies of the system, 
from (3) and (4), then one can derive: 

N-l 

vpy = x h’, (w)(iZ(rwo -I- w)) ;: (-IL!‘) (5) 
rro 

N-l 

(6) 

r=O 

where I, (r wg + w) as the impedance functions and F 
(TWO t- W) is the transfer function of the damper system. 

3 OBSERVATIONS AND CURES 

If the beam oscillates according to a single normal mode 
r, one can observe a spectrum of frequencies. 

w - lNwo + (rwo + Ahw) r- (7) 

appearing as the upper (+ sign) and lower (-sign) side- 
bands of the bunch frequency lines 1 Nwo; Aw denotes the 
synchrotron frequency in the longitudinal and the frac- 
tional betatron frequency in the transverse direction. 
Fig. 1 shows the frequency interval between 1 Nwo and (1 
t 1) 1 Nwo 
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Figure 1. Normal Mode Spectrum 

Let us consider I and T' = N - 1, the “complementary” 
mode According to fig. 1, the mode I produces the upper 
oscillation sideband and F’ produces the lower oscillation 
sideband around I Nwo + TWO. Instead of T = 0, ... , N - 1 
we consider the pairs T 5 N/2, T' (only for simplicity we 
assume N to be even). Then ail modes can be observed 
in a frequency interval between 1 Nwo and lNwol@o hav- 
ing a bandwidth of T&o. From the theory of multi-bunch 
instabilities follows that any real part of the impedance Z 
around INo’0 + TWO anti-damps the mode r and damps the 
mode T’. That is true only in the longitudinal direction. 
In the transverse direction anti-damping and damping al- 
ternate. The stability properties of all the modes defined 
by all contributions of the impedance function from all the 
different bunch frequency intervals. 

3.1 Observation of growth rates 

In order to get information about the stability of all the 
modes it is possible to excite the beam on the different 
mode frequencies far below the threshold current, observ- 
ing the damping rates as a function of beam current. 
Fig. 2 illustrates this method. 
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Figure 2. Response of an Excited Beam 

The beam excitation on the mode frequency is “gated” as 
shown by the upper trace. The beam response is shown by 
the lower trace. After the excitation has been stopped the 
damping rate can be measured. The experiment was done 
at PETRA in the longitudinal direction. The damping 
time is about 15 m set at low currents. 

3.2 Reduction of impedances 

If one has sufficient information about the dangerous par- 
asite modes a possible cure is to reduce the impedances of 
those modes by energy absorbing devices. This has been 
done in several machines. However, this method fails if 
the number of cavities and cells is too high (HERA-ring: 
about 100 cavities). Therefore, the only effective cure in all 
cases where a reduction of the impedances is not possible, 
is active damping by feedback systems. 

3.3 Feedback systems 

I)uc to the periodic structure shown in fig. 1, the effect 
of all impedance contributions can be represented by an 
equivalent effective impedance function restricted to a fre- 
quency interval with a bandwidth of half the bunch fre- 
quency. In order to keep the beam stable, we have to 
damp all the modes so that the damping rates exceed the 
growth rates. Therefore, we have to build up an “active 
impedance” function within a frequency range of TWO. Ac- 
cording to the stability properties between the modes, r 

and P* the transfer function F (TWO + w) has to obey the 
following relations. 

1. i (TWO + w) z; (TWO + w)for p # T’ (8) 

2.Im F (TWO + w) changes sign at TWO (9) 
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within a bandwidth $00 These properties can be repre- 
sented by the following scheme: 

F (TWO + w) =iG (,wo + w) it (TWO + w), (10) 

where ~~ (rwo + u) is sufficiently flat within two and 

FNF (w, + w) is an “adjustable notch filter” described 
later. 

3.4 Realization of feedback systems 

The principal block diagram of a feedback system is shown 
in fig. 3 

Figure 3. Block Diagram of a Feedback System 

After the beam oscillations have been picked up (PU), the 
signals pass the detector (D). At the output the analog 
data will be converted to digital information (ADC). The 
“notch filter” properties of the transfer function are pre- 
pared by the digital filter unit (DF). Going back to analog 
data (DAC), the signals are transferred to a chain of am- 
plifiers (ACM). At the end of the chain a power amplifier 
drives the active drvice (AD) which influences the beam 
An example for an “adjustable notch filter” is given by 

FNF:: eiwT {coscp + t isinw ?’ sintp} (11) 

where p can be a.djusted such that the total transfer func- 

tion F behaves like (8) and (9) for optimum damping. The 
transfer function (11) can be realized by a digital FIR- 
filter 

G(uTB) zz 2 T, z(vTB - IT) (12) 
I=0 

In this relation z and g are input and output data respec- 
tively, TB denotes thegarnping time which is identical with 
the bunch spacing tune and T is the revolution time. Fi- 
nally, the Tl represent the filter coefficients. In order to 
realize (11), one finds 

To = $inp,Tl = coscp,Tz = - - isinrp (13) 

3.5 Observations at high beam currents 

For the PETRA and HERA electron rings transverse and 
longitudinal feedback systems have been built (2). The 
treshold currents in these machines are observed to be 
around 2.5 mA, whereas the designed currents are 60 mA. 
Therefore, the damping rates have to be improved by more 
than a factor 20. For PETRA the high current multi- 
bunch experiments have already been performed and a sta- 
ble current of 56 mA has been reached in 80 bunches with 
a bunch frequency of 10 MHz. Fig. 4 shows the strong 
damping of the same mode shown in fig. 2 when the feed- 
back loop is active. 
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Figure 4. Damping of a Normal Mode by Feedback 

3.6 Strong stability 

As for as damping rates and growth rates are concerned, 
one would naively conclude that the relation 

151, + 6s (14) 

where 6~ and 6, are damping and growth rates respec- 
lively leads to a stable beam. However, even when the 
beam is “stable” there is still a strong coupling between 
the bunches. As a consequence, there is an energy transfer 
between the bunches. If a single bunch is excited, its en- 
ergy is coupled to all the other bunches during the whole 
system is damped. If nearly all the bunches are excited 
with a tolerable amplitude, the energy can be transferred 
to a small number of bunches, so that their oscillation am- 
plitude exceeds the tolerable limit. This internal “impact” 
is based on the real frequency shifts which are in general 
different for all modes and which are not compensated by 
the damper system. This “overshoot” effect increases if 
the number of bunches increases. The remaining damping 
rate at high currents has to be sufficiently large in order to 
keep the overshoot effect small. Since the real frequency 
shifts are of the same order as the growth rates (roughly) 
and since these shifts can be positive and negative, we 
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demand: 

so that we obtain 

61, - 6, > 26, (15) 

6D t 36, (16) 

instead of (14). The overshoot phenomena are still un- 
der theoretical investigation. For PETRA and HERA the 
feedback systems satisfy (16). 

3.7 Observation of (Lovershoot” phenomena 

The overshoot phenomena also influence the transfer of 
noise (always produced in a feedback loop) to the beam 
This offers a method to observe overshoot effects by look- 
ing to the noisy motion of the beam. Therefore at PE- 
TRA we started with (16) at high currents and reduced 
the damping. But even at 60 = 1.56, there was no sig- 
nificant increase of the noisy beam motion. However, the 
relation (16) should be satisfied in order to be save in the 
case of a high number of bunches (For the HERA-e ring N 
= 220). 
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