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Synchrotron radiation in the presence of a perfect cylindrical mirror 
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iZbstract ponents 

Exact solutions are given for the Maxwell equations driven 
by a gyrating ultrarelativistic electron in the presence of a 
reflecting cylindrical boundary. The axis of the electron’s 
circular trajectory and the axis of the surrounding cylinder 
are supposed to coincide. It is found that, at certain values 
of the ratio of the cylinder’s and the trajectory’s radii, the 
field amplitudes diverge as functions of time. The physical 
reason for this is the constructive interference between the 
radiation actually emitted and the radiation emitted ear- 
lier and (by reflection) getting back to the actual position 
of the electron. 

z(t) = To cos(wot + yo), (1~~) 

y(t) = ro sin(wot + PO), (lb) 

where ro = u/we, wg = “c/7 with tic = jc/Ho/7~1c. bc,ing 
the cyclotron frequency. u denotes the electron’s vclocit,y 
and -f E (1 - p2)-‘/2, ,B =; v/c. We assume that the 
longitudinal component of the electron’s velocity is zero, 
i.e. v, = 0, and that the gyration takes place in the I’ = 0 
plane. 

The densities associated to the trajectory of one single 
electron with initial phase yo, given by eqs. (la,b), can bc 
conveniently expressed in cylindrical coordinates 

1 INTRODUCTION 

The cyclotron and synchrotron radiation in free space has 
long been thoroughly studied both theoretically and ex- 
perimentally [1,‘2,3,4]. Recently in the context of cyclotron 
masers [5,6] and cavity electrodynamics, cavity effects have 
also been studied [7,8]. In the cyclotron masers the funda- 
mental or low harmonics are generated, on the other hand, 
in the synchrotron radiation the very high harmonics are 
dominant. The qluestion naturally emerges whether could 
OII~ somehow feed back these high harmonics in order to 
have stimulated emission and manage perhaps lasing also. 
In the present pa.per we give a short study of one possible 
feedback mechanism, where the trajectories of the gyrating 
ultrarelativistic electrons are completely surrounded by a 
coaxial cylindrical mirror. We will show that, if t.he ratio 
of the cylinder’s radius and the radius of the electron’s tra- 
jectory satisfies certain geometrical resonance conditions, 
then pracically for all very high harmonics resonance can 
be achieved. We do not know yet whether our scheeme can 
be of relevance for a synchrotron laser, but we think that 
the problem discussed here is interesting in itself, too: so 
that. it is worth presenting it,. 

Q = er -‘6(r - r0)6(y - (w0t + y0))6(z)u(t), (%(I) 

j = evg,r -‘6(r - ro)S(p - (wet + po))a(z)u(t), (2b) 

In eqs (2a,b) we have introduced the unit step functiolr 
u(t), being responsible for the switching of the interacti 

In order to obtain a physically meaningful solution of 
Maxwell’s equations driven by the densities (2a.bj incide 
the cylinder, WC bav? t.o take into account the bourld;ir) 
conditions [x x !S]C = 0 and [c fl]c = 0. That, is, thr 
tangential component of the electric field, and the normal 

component of the magnetic induction vanish at, the surface- 
of the cylinder (at any vertical position 2). llcuce c ;~r~tl fi 
are expanded into a superposition of the so -called cross 
sectional vector eigenfunct,ions. 

E=):Cl mpY;lkzp + x Lc, x I1 \k,,, + 

Similarly, 

B=ECt mpez x Pl%LJ? + ~kLY.i%,,ps- 

2 EXCITATION OF CYLINDRICAL 
WAVE-GUIDE MODES BY AN 

ULTRA:RELATIVISTIC ELECTRON 

In the present section wc give an exact solution of 
Maxwell’s equation driven by an ultrarelativistic elec- 
tron gyrating inside a perfectly reflecting cylindrical wave 
guide. 

The transverse position of the elrctron moving in the 
homogeneous magnetic field ~Q3o has the Cartesian com- 

In eqs (3a,b) amp and Q,,, are Dirichlet and Neumann 
eigenfunctions satisfying the scalar Iielmlioltz equation 
(0~ + @)f = 0 with eigenvalues krnp and k,,, respcc- 
tively. The unknown coefficients anlp, 6,,,, c,,,~ and o,,,~,, 

PIIS, -rm are to be determined as functions of time (t) and 

vertical position (z). According to the boundary condit,ion 
[%l& = 0, @m, must have the form 

SC, c cmp Qrnp 
mP 

se2 1 ^ins Q’lu 
7, 3 
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Q mp = Jrn (xmp;) {~~~;;),>-L(x,,,, = 0, (4a) 

where I,,,~ i,s the p-th root of the Bessel function J,. On 
the other ha.nd, since [@P,,/&]C = 0, we have 

where 1 E tr - tz and z E zr - 22. With the help of the 
Green’s function (7) the solution of eq.(6) can bc deter- 
mined by simple integrations. 

In general the explicit form of b,, is a complicated ex- 
pression, however, for large values of t a relatively simple 
expression can be derived (for short,, we present only the 
upper component of b,,): 

where yns is the s-th root of the derivative of .I,,,. The 
eigenvalues of the corresponding wave numbers are Is,, = 

% and k,, = %, respectively, where a is the radius of 
the cylinder. 

*ns = Jn (~nsf) { f~~~~\)‘JL(~ns) = 0 (4b), b,,(z,t) = -~~~~{Jo(“~.~t~)(sinpo)u(t - ;+ 

-1) 
+vn;k slnn 

1 
do(t - f/m/4) + PO -t 

1 

(cos t~(wot+cpo)) exp 
By taking into account the ortogonality property of the 

cross-sectional eigenfunctions, we can derive from the in- 
homogeneous Maxwell’s equations two sets of coupled first 
order differential equations for the expansion coefficients. 
The set {amp, amp ) cmp} is responsible for the dynamics of 
the TM and longitudinal components of the electromag- 
netic field. On the other hand, the dynamics of the TE 
components are governed by the set {bnJ, p,,, mS}. It can 
be shown th.at (r mp(z = 0,t) = 0 and c,,,~(.z = 0,1) = 0, 
moreover, in the case we shall discuss below amp vanishes 
to a good approximation at any vertical position. This 
meams that in the plane of the electron’s gyration only 
the TE modes are excited, that is why henceforth we shall 
be dealing only with the TE modes. 

The coupled system of equations for 
reads 

ahu 1 Bb,, 47r 1 
------ n3= -~ 
a2 c at 7 c N& J ds’j - 

-X!&%-0 abn, 
aZ cat 1 

b 1 ah "3 - = 0, 
ck,& at 

LA%, and mJ 

k, x Y~*n,) , 

(5a) 
(5b) 

(5c) 

where N:, == (7~/c,)J~(y,,)(y~~ - n’), and EO = 1,~~ = 2 
for n = 2,3, . . . The integration on the rhs of eq.(5a) 
is to be evaluated over the crosssection of the cylinder. 
Having eliminated the functions pnJ and y,, we can derive 
an inhomogeneous one--dimensional Klei-Gordon equation 
for b,,(z, t) 

a2 i a2 ----- 
a9 3 at2 k:, > bns = ~n,~(~)f~(t)lc, (6) 

where 

and 

& _ 4ep(Y”Sla)J:,(Y~,ro/a)rn 
J,2(Yns>(YZ, - 74 ’ 

(6~) 

(6b) 

The Green’s function of eq.(6) can be derived by using 
standard methods 

g(t, z) = -zJo(cknSJm)u(t - H, 
2 c ) (7) 

(8) 
where v,, G nwcjw,, with w,, = ck,, being the ‘I’E eigen 
frequencies. The first term on the rhs of eq.(8) represents 
a transient which vanishes as l/v”?. the second and the 
third terms correspond to above--cutoff and below -cutoff 
waves, respectively. At exact resonance (v,,~ = 1) eq.(P) 
loses its validity, and b,,, has a qualitatively different form 
(for short, we present here only the upper component, of 
b,, taken at z = 0): 

b,,(z = 0,t) = -~U,,,{~l(nwot)(sinnyJ)+ 

+niJot [Jo(nwot) cos ncpo - J~(nwof) sinripc]} (!)I 

It can be easily shown that for large t b,, diverges as fix 
(oscillatory function). Of course, since some sort of damp- 
ing is always present in physical systems, such a divergence 
is not realistic. We have performed a similar analysis to the 
one presented above by introducing in addition a damping 
term (-knS/cQn3)(ab,,/at) on the lhs of eq.(6). In this 
case the structure of b,, similar to that ofeq.(8), but in this 
case tha oscillatory parts contain resonance denominators 
of the form [(v:, - 1)’ + v,Tf,/Q~,]‘/“. Hence, close to res- 
onance the amplitudes are increased by a factor of K. 
For the high harmonics we are interested in, Q,, can be 
well approximated by a/b,,, where 6,, = (2/~0w~~)~/’ is 
the usual skin depth. For example, for silver 6, - 6 x 10-s 
cm for w/27r w 10” Hz. In the optical region 6 can be two 
orders of magnitudes smaller, thus Q can be very large if 
a is of order of meters, say. 

3 RESONANCE CONDITIONS 

In the present section we study the question of under what 
conditions simultaneous resonance can be reached for most 
of the higher harmonics of the synchrotron radiation in the 
cylindrical mirror. 

The geometrical arrengement we are interested in is 
shown on Fig.1. On geometrical resonance conditton we 

mean that the radii of the electron’s trajectory and of the 
cylinder are adjusted such a way, that a signal emanating 
tangentially at point A, after reflection, gets back to the 
electron’s trajectory at point B exactly at that time when 
the electron (possibly after N complete revolution) gets to 
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that same point R. It is clear that, if once this condition is 
satisfied for the pair of points A,R, then it will be satisfied 
for the pair A’,B’ which can be obtained by rotating the 
pair A,B by an arbitrary angle. This way the electron, 
after a while, will continuously move in its own retarded 
radiation field w:hich has been emitted earlier at different 
points on the trajectory. We think, that this arrangement 
would secure an effective feedback for obtaining stimulated 
emission. 

Fig.1. A ray o,f radiation emanating from fhe electron at 
point A gets reflected on the cylindrtcal mzrrwr, and arrives 
at point B ezactly at the instant when the electron arrives 
there. For further ezplanation see section 3. 

By simple kinematic considerations, it can be shown 
that, if the geometrical resonance condition holds, then 
the ratio u/r0 satisfies the following transcendental equa- 
tion 

/3&?-Z -- arccos(l/z) = Nir, 1: 3 a/?-g (10) 

where N is the number of complete revolutions of the elec- 
tron before the first encounter with its own radiated field 
after one reflection. For N = 1, we obtain approximately 
u/r0 2: 3~/2, for hr = 0, a/r0 or 1 + 3/4y2. Henceforth we 
shall study the case N = 1. 

The wave resonance condition 1 = v,,~ E nwg/~,, = 
(n/y,,)(/Ja/ro) of the previous section can be considered 
by using the asymptotic form of the roots y,, of the deriva- 
tive of the Bessel function J,. Here we restrict ourselves 
to the case when not only n but also s are large. (It can 
be shown that if s considerably differs from n then the 
resonance cannot be reached.) For large n we have 

where z(C) is the inverse function defined by the relation 

Jfz-r- arccos(l/z) = i(-(j3/2. (116) 

(’ = n-3/2a:, with Q: are the s--th negative zeros of the 
derivative of the Airy function. Since n is very large, 
z = 2, and because j3 is practically unity, the left-hand 
sides of eqs.(lO) and (lib) coincide. Now, for large s 
-C = (3m/2n)2/3 h o s Id t o a good approximation. Having 
taken this relation into account, we can easily check that, 
if the geometrical resonance condition is satisfied then the 
wave resonance condition (lla) becomes an identity for 
s = n. As a consequence, the wave resonance condition is 
independent of the n values, if these are large enough. This 
means that (if Qnn is a smooth function of n) there exists 
a broad band in the highfrequency part of the spectrutn 
which is almost uniformly “lifted up”. This accumulation 
process can be interpreted as a result of the constructive 
interference between the radiation actually emiited and the 
radiation emitted earlier and (by reflection) getting back 
to the actual position of the electron. 

4 SUMMARY 

In the present paper we have discussed some of the charac- 
teritics of the synchrotron radiation emitted by an ultra- 
relativistic electron in the interior of a cylindrical mirror. 
We have shown that near the plane of the electron’s gyra- 
tion only the TE modes are excited, and we have briefly 
dicussed the role of the damping close to resonance. In 
section 3 we have introduced the geometrical resonance 
condifion, and we have shown that if this condition is sat- 
isfied, then the wave resonance condition does not depend 
on the excitation index of the very high harmonics. At 
such a resonance there is an accumulation process taking 
place due to which the intensity of the emitted radiation 
can be increased by many orders of magnitude (depending 
on the value of Q). We have also given a simple physical 
interpretation for this enhancement. 
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