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2 MEASUREMENTS 
Abstract 

Observations of coupling between longitudinal 
modes on a coasting beam have been made in 
the Fermilab Tevatron. A model for the 
intermode coupling is developed based on a 
three-wave scattering formalism. This analysis 
leads to a frequency selection rule and an 
intensity threshold, which determines the onset 
of the coupling phenomena. We present the 
results of these experiments and analysis. 

1 INTRODUCTION 

In a stored, coasting beam, a well-known class 
of longitudinal oscillations that occur at 
harmonics of the revolution frequency can be 
induced by external excitation or destabilized 
by a ring impedance of sufficient magnitude 
and appropriate phase.1 A commonly-used 
method of empirically determining the ring 
impedance is by applying external excitation to 
the beam and measuring the transfer function2 
to a calibrated pickup. 

During measurements of the beam transfer 
function in a Tevatron 150 GeV coasting beam, 
we have observed, in addition to the expected 
linear response, the excitation of a number of 
neighboring revolution harmonics. The 
response is suggestive of parametric3A, or three- 
wave coupling whereby the external excitation 
couples to other frequencies according to a 
specific set of selection rules. 

In this paper, we describe details of these 
measurements and develop a theory based on an 
extension of the linearized Vlasov equation to 
include the effects of weak nonlinear coupling 
between longitudinal modes. In Section 2, we 
present the experimental results. In Section 3, 
we give a brief derivation of the nonlinear 
coupling theory and in Section 4 make a 
comparison of the theory and experiment. In 
Section 5, we discuss the implications of the 
phenomenon and applicability of the model. 

A proton beam of intensity 5~10~~ and 
momentum spread odp - 2~10~~ was coasting 
at 150 GeV. The beam was excited with a 
wideband longitudinal kicker and the response 
at the pump frequency was measured with a 
network analyzer using a wideband pickup. 
The neighboring frequency spectra were 
simultaneously monitored with a spectrum 
analyzer. Measurements were made by slowly 
scanning the pump frequency across a 
revolution line (c&f - 160 sece2). 

The measured response was observed to contain 
harmonic lines below the pump frequency, as 
shown in Fig. l(a), as well as a corresponding 
series of harmonic lines near zero frequency, as 
shown in Fig. l(b). Further investigation 
indicated that the coupling to neighboring 
harmonics only occurred when the beam 
intensity was above about 2~101~. The single- 
sideband response was observed for both 
positive and negative slewing directions, but 
disappeared altogether when the excitation 
frequency was stationary. 

3 VLASOV MODEL 

Longitudinal modes in a coasting beam are 
described by the Vlasov equation in the 
following form 

ag *a&l -++nnog+&z=O 
at 

where g is the perturbed distribution function 
for the nth Fourier harmonic, go is the 
unperturbed distribution function, and o is the 
instantaneous revolution frequency. This 
equation is linear and, apart from a small 
frequency spread, will not give rise to a 
response other than at the excitation frequency. 
In order to explain the frequency coupling, we 
follow the analysis of three-wave coupling in 
ref. 3 and introduce a modulation of the 
instantaneous energy of the form 

E = & + eV,sinGt 
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Fig. l(a) Frequency spectrum near pump 
frequency R, = 1OOOoo (b) low frequency 
spectrum. Lines are spaced by one revolution 
frequency. 

We have assumed that the excitation is spatially 
uniform. The resulting equation for g becomes 

%o $ + i n(*+kJ&&zV,sinRt])g = - *nx 

where &, = - ?I o,/p2 E, is the frequency 
dispersion and Un is the wake potential of the 
nth harmonic. The solution for g(t,&) may be 
expressed as a doubly infinite series of Bessel 
functions. We use the Fourier representation of 
the wake potential and integrate g over E to 
finally arrive at the modulated current 
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This equation represents the coupling of 
adjacent longitudinal modes due to the 
modulation at Ro. We consider two distinct 
modes of index nt and n2, and we keep only the 
lowest order terms in the Bessel function 
expansion. Retaining the contribution of the 
wake field of mode nr on mode n2 and vice 
versa leads to the following coupled set of 
equations 
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We consider solutions where Q - o. and as 
before retain only resonant terms, leading to 

Iz(Q+Q,) D:“‘(G+Q,) = $ ww(fi)x,“(Q+%> 
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The final dispersion relation is found by 
eliminating the unknown currents from the 
coupled set of equations. 

Dy’(i2) = 
p2 z(n-~~z~n~x~~n-~,~~x~~~l-x:~~l~ - 
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CL2 zcn+a,)zcn)~(a+~)cxP~nl-x~l[~l) 

+4 W(~+%> 
The strongest coupling occurs when the 
denominator of one of the terms on the right 
hand side goes to zero, namely at the resonance 
condition of the shifted frequency of mode n2. 
The growth rate can be found by solving the 
above dispersion relation for the frequency Q. 
The solution is shown for the case when nt CC 
n2 as a function of the drive frequency Ro in 
Fig. 2. The maximum growth (Im(Q) > 0) 
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Fig. 2. Growth rate vs. drive frequency Qo. 

occurs when (nl+nZ)Wo = Ro. In addition, this 
model indicates an intensity threshold for the 
coupling to occur, as shown in Fig. 3. The 
process becomes unstable when the 
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Fig. 3 Growth rate as a function of the coupling 

coupling strength exceeds the power lost by 
Landau damping. 

COMPARISON BETWEEN 
THE dODEL AND EXPERIMENT 

The above model corresponds to the 
observations in two important ways. First, the 
coupling is observed to have an intensity 
threshold which depends on the strength of 
Landau damping. Second, the single-sided 
nature of the coupling is ensured by the 
frequency matching condition described above. 
While we have only modelled the coupling of 
adjacent modes, it is conceivable that, once 
generated, each decay mode in turn can decay 
into other lower frequency components, thus 
explaining the multiple line spectra observed. 
However, it is also possible that coupling across 
multiple harmonics can occur. 

Other phenomena remain unexplained by our 
model, such as the lack of coupling with a 
stationary excitation frequency. It is possible, 
that changes in the equilibrium distribution can 
occur, which over long time scales will cause 
Landau damping to increase, thereby increasing 
the threshold for the coupling. 

5 DISCUSSION 

We conclude that that our model based on weak 
nonlinear coupling is in qualitative agreement 
with the observations. In partucular, the single- 
sided character of the coupling as well as the 
intensity threshold are explained by the theory. 
The coupling can be viewed as a scattering of 
one longitudinal mode from the pump wave 
oscillations into another longitudinal mode. 
The primary condition for coupling to occur is 
the fact that the pump frequency must equal the 
sum of the two decay frequencies. 

The implication of these results is the fact that 
conventional beam transfer function 
measurements may be in question when either 
the exciting voltage or the beam intensity is 
sufficiently high. However, the observation of 
coupling can, in principle, be used to determine 
the ring impedance if details of the distribution 
function are known. Another consequence of 
these results is the fact that the overall beam 
stability is altered by the presence of the 
nonlinear coupling, though the modification is 
typically small. 
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