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Abstract 

The use of crossed beams in a circular collider will excite 
synchro-betatron resonances and such resonances may limit the 
ultimate performance.’ In order to investigate further the effects 
of a crossing angle the weak-strong Hamiltonian approach is used 
to find the resonance strengths of the individual resonances. The 
results of a computer simulation show good agreement with the 
theory. 

Introduction 

The design of the next generation of high luminosity 
(approaching 1034/cmz/sec) electron-positron circular colliders 
poses many challenges. One such challenge is the design of a 
separation scheme near the interaction point so that the coun- 
terrotating bunches only collide at the interaction point and not 
at the parasitic crossing points. One scheme under consideration 
involves the use of a crossing angle. It is well known, however, 
that a crossing angle will excite synchro-betatron resonances 
that could make this scheme unworkable! Oide and Yokoya3 
have suggested that by applying the ‘crab-crossing’ scheme in- 
vented by Palmer* to storage rings that the synchro-betatron 
coupling could be virtually eliminated. If there are errors in 
the compensation, however, some synchro-betatron coupling will 

5 
occur. 

To understand theoretically the nature of the synchro- 
betatron resonances induced by an angle crossing we have mod- 
ified the Hamiltonian formulation of Izrailev and Vasserman 

6 

to include angle crossing and finite bunch length effects. As 
a first step we have calculated the strengths of the individual 
resonances and have estimated the range of validity of the prr- 
turbation calculation. We also present the results of computer 
simulations that give good agreement with the theory. 

Hamiltonian Theorv 
In the weak-strong formulation of the beam-beam interac- 

tion the trajectory of a single particle of the ‘weak’ beam as it 
passes through the ‘strong’ beam is described by an interaction 
IIamiltonian HI that is a function only of the particle’s coordi- 
nates and time. For head-on collisions (zero angle crossing) this 

can be written as 
‘I 

Hr(z,P,,y,P,,t) = z 2 P(z,y)A 
“z--m J27T;;li 

exp[-c*(2t - (2nTa + t1))‘/(2af)l 

where 6, is the strong bunch length, To is the revolutionperiod, 
t, is the synchrotron displacement of the particle, and V is the 
normalized potential with normalization factor 5 = &crz/,&. 
f2 is the horizontal beam-beam strength parameter, ‘T, is the 
strong beam horizontal width, and pt is the horizontal betatron 
amplitude function. In this paper we assume that the strong 
and weak beams have the same p’s, 

For collisions at a finite crossing angle the potential is mod- 

ified by the fact that the transverse displacement relative to the 
other beam is now dependent on the longitudinal distance of the 
particle from the interaction point. The potential r/ in equation 
(1) must be replaced by 

V(z,y) -----t V(, + 8c(t - nTo - t‘),y) (2) 

where 6 is the crossing angle and it is assumed that the crossing 
lies in the horizontal plane. 

It is useful to transform to action-angle coordinates’ 
(I=,+!J,, Iv,&). For I, and qz the transformation is 

E = tEEcos[tclz i- xz(t)l , 

4, = woQtt - v&o 
(3) 

, 
where c(i--t.) 

x.(t) = J 
ds 

___ - woQz(t - L) 
” O.(J) 

. (4) 

In this equation QE is the horizontal tune, and wo is the revolu- 
tion frequency. 

After expanding the potential in powers of 0, and Fourier ex- 
panding in x=,~ and 1, the transformed interaction Hamiltonian 

~~(I~,&,I~,lji~It) becomes 
m 

r;?, = pj~:(I,,$,,I,,IL,,t) 
jdl 

= Ec (!Jj E ,i(Ptp=+q+~) Ja dwe id 
J=o P,*,n=-m m 

OD 

/ 
dt'(c(t' - (Co + t.))j+ We 

*(Px=(~')+Px~~')) 

--oc 

(5) 

-+ expI cy2t ~ (2nT0 t t,))2/(2c:)] 
ToI 

where i‘A is the normalized Fourier component of the expanded 
potential 

j 2* 2x 
T-$&I,, I,) = & o &z o J J d4ye-‘P’*e-‘qdv 

ij $ (v4Iz8, cos +z, $iiy& cos dy > . 

From the symmetry of p(z,y) it can be seen that PA will be 
non-zero only if Q is even, and p and j are either both odd or 
both even. 

When equation (5) is analyzed it is found that resonances 
occur when 

WWkm -wo[pQztqQ, t Q-m]= 0 (7) 
where k and m are integers. The strengths of the individual 
resonances can be calculated analytically if one assumes that 
P=(S) and p”(s) are constant in the interaction region, and that 
the beam-beam perturbation is ‘small’. In this case xz,u(t) can 
be written as 

-Qz,v (t ~ (n7b i t,)) (8) 
where ‘*’ denotes the value of a at the interaction point. The 
normalized Fourier coefficients F&k are defined by the equation: 

Fjqk = 8jG;(wpqk, =- o)e-‘p~=oe-iq3uo/(,o~) 
and up to second order in 8 they are 

F -ik = i’F;Jk 
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where Jk and J; are Bessel functions and their derivatives, 

(9) 

and A, is the synchrotron amplitude defined by 

ct, = A, cos(Zxn&.) (11) 
All the resonance strengths have an exp[-afB&/8‘ term 

due to the finite length of the strong bunch. This term’is due 
to the ‘phase averaging’ of the beam-beam kick7 and is very 
pronounced for the higher order resonances. 

In normalized amplitude space ii,, A, with 

(12) 

&jWk - 
Y - 

where the aspect ratio T 
earity factor a is 

P’ 8(h) a=--=-----+ 
A,& 8.4, 

= ff,/u,, and the normalized nonlin- 

2m a(A+) 
aaiT,+ 

-( > 
q2 & ’ a(A+) 

T&L (1: aii,’ 
(14) 

The contribution to the amplitude dependent tune shifts Au, y 
from the beam-beam interaction can be calculated from the 
equations 

A” 
r 

= Tz aftOO 

A, c?A, ’ I, c\ 
Av 

Y 
= & at:o, 

TA, aA, 

Aside from questions of the validity of the weak-strong for- 
mulation there are several other approximations that have been 
used in arriving at the above equations. Since we have used first 
order perturbation theory (cf. equation (8)) a necessary condi- 
tion is that the strong beam focal lengths fi*r = /?E,Y/(47rEL,Y) 

must be much longer than o,.” The approximation that PZ,v(.s) 
is constant in the interaction region affects the equations in two 
ways. First, equation (8) was derived assuming a constant /YE,u. 

Second, the FA term was factored out of the time integral in go- 
ing from equation (5) to equation (9) by ignoring the fact that 
r;‘(z,y) depends upon PT,y(3) (and hence the time) both through 
the particle coordinates and through the size of the strong beam. 
Since the typical length scale over which 0 changes is 4’ a ‘re- 
quirement’ for the validity of the above equations is that A, $6. 
be less than both /?: and ,f$‘. 

For computational purposes the series in equations (13) have 
to be truncated. Since the length scale of v(z,y) as a function 
of z is 6, this leads to the (non-rigorous) conclusion that the 

higher order terms should be small when 

4,s + A) < 1 
uz 

(cf. equation (2)). F rom a practical standpoint this restriction 
is probably not too serious since it would be undesirable to have 
a collider running with Bu,/u, > 1 due to the attendant ‘geo- 

11 metrical’ loss of luminosity. 

One additional approximation is that the longitudinal rno- 
tion is treated parametrically instead of as a true degree of free- 
dom. This is usually justified by noting that the energy in the 
longitudinal motion is much larger than the transverse energy 
so that the ability of the beam-beam interaction to ‘pump’ the 
longitudinal motion is small compared to its effect on the trans- 
verse motion. Recently, however, it has been suggested that the 

beam-beam longitudinal kick is not negligible.” The simulation 
results below address this point. 

Computer Simulation 

In order to make a direct quantitative test of the equa- 
tions developed in the preceeding section weak-strong simula- 
tions were performed to measure the resonance widths predicted 
by the theory. In the simulation the p’s at the interaction region 
varied quadratically with longitudinal position, the chromaticity 
and dispersion were assumed to be zero, and transport in the 
arc was linear. The strong bunch was divided into 9 ‘chunks’ 
with each chunk being treated as a thin lens and with the test 
particles being propagated freely between chunks. All the sim- 
ulations used round bunches with pi = /3;, and cr. = (TV. 

The resonance widths were measured using 150 test parti- 
cles. The transverse amplitude at which the resonance was to 
be observed was fixed (in this case at 17, = 5.0, A, = 0.0) 
and the particle’s nominal tune (the tune without the beam- 
beam interaction) was adjusted so that at the desired ampb- 
tude the particle’s frequency would correspond to the resonance 
frequency of interest. Initially the particles were distributed uni- 
formly in phase space near the resonance and the particles were 
tracked for 4000 turns. For a given particle the ‘particle oscilla- 
tion width’ was defined as the maximum variation in amplitude 
at a given longitudinal and transverse phase over the course of 
a run. The width of the resonance was then taken to be the 
maximum particle oscillation width of those particles that had 
the correct resonant frequency and the correct amplitude. In 
these simulations neither damping nor radiation excitation were 
included. 

The theoretical lines shown in the accompanying figures were 
obtained using the lowest order resonance strength term. Fig- 
ure 1 shows the width of the (p,q,k) = (3,0, -3) resonance as 
a function of 6A,/crz for fixed A,, A,, A,,, and cd. Simula- 
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Fig. 1. Resonance width of the p, q, k = 3,0, -3 resonance 
as a function of 9A,/u,. A - simulation with energy kick 
(emittance ratio cZ/c, = .008). a - simulation without an 
energy kick. Solid line the theoretical curve using the 
r;;b-a term from equation (9). 
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tions were done both with and without an energy kick. In the 
simulation with the energy kick the transverse to longitudinal 
emittance ratio c s,‘cr was ,008 where c,/E, E u&,&‘(~~u,2Q~), 
a, is the momentum compaction factor, and II is the mean ra- 
dius. No significant difference between the two simulations were 
detected. The simulation data clearly shows the square root de- 
pendence on 0 that is characteristic of all odd p resonances (see 
equations (9) and (13)). The theory fits the data well even in 
the region where equation (16) is violated. This signifies that 
the higher terms in the Hamiltonian expansion are ‘small’ in this 

Figure 2 shows the (p, 9, k) = (5,0,2) resonance width as a 
function of u,//?. The cusp in the theoretical curve occurs where 
the two terms in brackets for p&Z in equation (9) cancel each 
other. The theoretical curve underestimates the measured width 
at large values of a.//3 because the assumption of constant p 
overestimates the phase averaging experienced by the particles. 
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2. Fig. 2. Resonance width of the p, Q, k = 5,0,2 resonance 
as a function of a,/@. l simulation (without an energy 
kick). Solid line - theory using the p$uz term from equation 
(9). 

Figure 3 shows the (p, q, k) = (3,0, -3) resonance as a func- 
tion of A,/@. In this case 0 was also varied in order to keep 
e&/u, constant. The simulation follows the theoretical curve 
for small A./P, but at large A,//3 the theory obviously breaks 
down. The breakdown is primarily due to the assumption that 
p is constant in the interaction region. Part of the discrepancy, 
however, is due to the fact that at large resonance widths the 
small oscillation approximation that was used in deriving equa- 
tion (13) breaks down. In this case o will vary by a factor of 2 
when the resonance half width reaches 1 and this variation dis- 
torts the resonance so that it is larger than equation (13) would 
predict. 
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3. Fig 3. Resonance width of the p, 9, k = 3,0, -3 resonance 
as a function of A,. . - simulation(without an energy kick). 
Solid line - theory using the Fsr0-3 term from equation (9). 

A pair of simulations were performed to further test the 
effect of a longitudinal energy kick. One simulation included an 
energy kick while the other one did not. Damping and radiation 
excitation were included in these simulations. The simulations 
used 500 particles which were tracked for 7000 turns. The initial 
distribution of the particles was Gaussian. c,,‘c, was ,005, the 
transverse damping time was 2000 turns, the nominal vertical 
tune was .23, the nominal synchrotron tune was .06, the weak 
and strong bunch length to p ratios were 1.0, E was ,025, and 
ecr,/u, was 1.0. At the places where the particle was kicked the 
energy kick was computed from the general equation 

AE 
-= 
E I 

+ + a) - .!+] + 

f I(- QZCZ + (Il.a,)(~:“s)l(?d21”))~a~~ -- 
aK (17) 

QYfY- ayy 1 
where I’ and y’ are the horizontal and vertical slopes due to the 
betatron osculations, K, and K, are the transverse kicks expe- 
rienced by the particle, Q,,~ = -,LZJ:,,/Z, c,,~ are the emittances, 
*E = “E/E, and 17~ and r& are the off-energy dispersion func- 
tions (in our case these are zero). [Note that the above equation 
assumes a Gaussian distributed strong beam but it is valid for 
beams with arbitrary aspect ratio 7.1 The nominal horizontal 
tune was scanned from .30 to .50 in steps of .0025. No signifi- 
cant differences between the two simulations were observed. 

Conclusion 

The resonance width prediction of the weak-strong Hamilto- 
nian formulation for a crossing angle shows good agreement with 
weak-strong simulations except in the region where (A, + a,)/P’ 
becomes large enough so that the variation of p(s) invalidates 
the theory. Despite this limitation the theory clearly shows that 
finite bunch length effects are important in reducing the reso- 
nance strength when the bunch length becomes comparable to 
&IP or ByIn. 
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