
1343 

BEAM LOADING ANALYSIS OF A TRANSFORMER-COUPLED RF CAVITY 

S. Bartalucci, R. Garoby, A. Riche and A. Susini 

CERN, 1211 GENEVA 23, Switzerland 

1.m 

Coherent dipole longitudinal instabilities have been observed 
in the Electron-Positron Accumulation Ring (EPA), which is part of 
the LEP injector chain. These instabilities turn into a strong limitation 
upon the maximum beam current, depending on RF cavity voltage 
and tuning angle. .Although the nominal performances of the machine 
are not affected, as far as the operation of the LEP injector chain is 
concerned, a study of beam loading effects seems worthwhile, 
because: i) it might be necessary to accumulate up to 4 times the 
nominal intensity for LEP injection, ii) it was foreseen to reduce the 
cavity voltage for optimum injection to the PS, iii) owing to the rather 
unconventional design of the RF cavity, one might expect the 
intensity limits to be different from those predicted by classical 
Robinson’s criterion. 

In this paper a transformer-coupled resonator model for the 
EPA RF cavity is presented, and a detailed analysis of its beam 
loading stability is performed. The results are compared both with 
Robinson’s criterion and with some measurements taken during EPA 
running-in. 

2. De cam 

The EPA RF system [ 1] consists of an accelerating cavity 
coupled through a magnetic loop to an amplifier cavity where the 
power temxle is located. The equivalent lumped circuit of this system 
is shown in Fig. 1, together with the usual phasor diagram. The 
power tube is represented by a current generator with its plate 
resistance R, added in parallel. The beam is also represented by a 

current generator at the fundamental frequency 19.1 MHz, whose 
amplitude is twice the DC beam current (valid for typical EPA bunch 
lengths). In the following we shall adopt the notation used by 
Pedersen [2]. 
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Fig. 1 - Equivalent circuit and phasor diagram 

Using Kirchhoffs laws the following complex quantities can 
be calculated: 

z,, = (3) _ 
f 43-o’ 

i.e. the impedance seen by the power generator, 
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<,=($+ i.e. the anode impedance transformed to the 
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accelerating gap, ;= (>),=e, i.e. the voltage step-up (transformation 
v I 
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ratio) between the anode and the gap and 2, = (--$)\ =. , the gap 
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impedance (as seen by the beam). 
We are interested in the transmission from small modulations of 

I, to the beam induced voltage V,, that is, in 
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where s = jo. The damping coefficients a 
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~ 1.2=R C , the mutual 
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inductance coefficient k = I and the resonant frequencies 
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of the primary and secondary circuits are derived 

from low-level measurements. 
A typical set of parameters is reported in Table I. 
The plate resistance has been estimated from the tube 

characteristics (SIEMENS RS 1084 tetrode) and added in parallel on 
the generator side. The cavity shunt impedance R, has not been directly 
measured, but it is estimated as R, = Zn,Q, where the characteristic 
impedance Zn = 41 R was calculated by SUPERFISH and the loaded 
quality factor Q = 3446 was measured with a Network Analyzer. 

Table I - Cavity parameters 

r+ 16857.0 kHz , Q,= 1000, ZnI=45Q 

f= 2 2 = 19029.34 kHz , Q, = 6000, Znz= 41 R 

RP = 7.2 kR , f. = z= 19085.24 kHz bunch frequency 

“d( -$= 4x = 335.5 kHz 

The stability analysis of such a system will follow the guidelines 
of Pedersen’s work. For the beam we assume rigid bunches, so its 
phase transfer function between excitation and beam is: 

co” 
B(s) = 2 

s2+of 

The impedance (1) has been used to calculate the transfer functions 

GBp,(s) and G’,,(s) for transmission of amplitude and phase 
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modulations through the cavity, which are defined in Appendix A. 
The characteristic equation is: 

v, 2 “OS& 
I =-- 
B R‘ sin24 

which was established for the single resonator model. 
% 

I - B(s) (Gf)) + tan$sGL(s)) =O 

and we know that the system is unstable if, and only if, the 
characteristic equation has roots with positive real part. 

By inspection of the above formulae, it is easily recognized that 
this equation will be of 10th degree in s, with very complicated 
coeftlcients, making the analytical solution impossible even wirh the 
help of symbolic programming. Therefore a program has been written 
to perfoml this calculation numerically (see Appendix 8). 

3. RS 

First we have considered the case where the generator current I, 
is constant. If the power tube is assumed to be an ideal current 
generator, this corresponds to the experiment where a constant 
excitation is applied to the connol grid of the tube. Furthermore the 
tuning loop is disabled in order to keep the phase angle $L of the cavity 

impedance constant. The parameters which enter eq. (2), are I<;, I,, 

%, 4s and QL. These two last angles are no longer constant during 
accumulation, so we used the steady state conditions as derived from 
the phasor diagram: 

I,% 
V 

tiulL”9, - - cosQft 

I, COS$~ = $ + I, sines, tanQ = Vc 

s 1+ lB.RI -sin+, 
Vc 

with es = arcos (- Jm ) and U, is the synchrotron ra- 
c 

diation loss per turn at 500 MeV. From these 3 eqs. we eliminate QI, 

and +L and we get a 4th order polynomial (see Appendix C) in Vc 

which is analytically solvable. In this way we determine the stability 

for any $ = const. trajectory in the ($L, IB) plot by applying the 
Routh-Hurwitz criterion to the characteristic equation. 
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Fig. 2 -Stable bajectories forthe transformer-coupled cavity: 
* measured trajectories, + Robinson instability. 

An example is shown in Fig. 2. The stable trajectories are described by 
solid lines, which are stopped when the polynomial has no longer any 
real solution. It happens that the cavity voltage V and the beam current 
I, corresponding to the end point verify exactly Robinson’s condition 

Moreover, the program which applies the Routh-Hurwirz criterion 
for the verification of the stability, finds the end points of all the 
trajectories of Fig. 2 always unstable. 
Two measured curves of I, versus I$~ are also shown in Fig. 2. Other 

measurements have shown that there is a systematic error on the 01, 
values, probably due to some non-linearity in the power tube. 

Fig. 3 - Comparison of the two models. 

In Fig. 3 the instability zones for the single resonator model are 
displayed, as calculated by the program, together with the stable 
trajectories of Fig. 2. The areas shaded with + are unstable according 
to the Routh-Hurwitz criterion, while those shaded with squares are 
forbidden by power limits. 

Looking at Fig. 3 the only difference between the two models 
would appear if the instability limit were occurring before the end of 
the trajectory. This is not the case for the parameters of EPA cavity 

There is a remarkable good agreement between the computed 
and the experimental curves if we plot- instead of (pL, the cavity voltage 

V, against the beam current as in Fig. 3. This is a confirmation of the 
validity of our model, since the voltage measuremcn! was 
cross-checked by various means. 

We have also investigated the stability of the transformer-coupled 
system when the cavity voltage is given. In Fig. 5 the trajectories at V, 
= 10 kV and constant tuning angle are displayed together with the 
instability domains. The Robinson limits are superimposed and show 
good agreement. 
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Fig. 4 - Trajectories in the (Vc, I, DCl plane: - solid lines for the 
transformer-coupled cavity, * measureii’trajectories. 



Fig. 5 - Stability plot for the case Vs = 10 kV: + Robinson instability, 
-_ dashed line: theoretical hmit, - solid lines: trajectories. 

The two-resonator model was introduced as a possible 
explanation of the observed beam intensity limits in EPA. As shown in 
Fig. 4 these limits are very close to the thoretical predictions. These 
predictions appear to be almost identical to those of the single resonator 
model as shown in Fig. 3, at least for the EPA cavity parameters, 
where the two resonance peaks are about 2 MHz apart. 
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APPENDIX A - Transfer functions through cavity 

Z being given by eq.( 1) 

GS(s) =; [";':2"2 + 
z(s -.iwe) 
z(-jwJ 1 

. z(s+joc) 
GJs)=+[ 

ZQ-jw> 

ujq - z(-jqJ 1 

withU=I$nand$=$I-+L+% 

G”, = [GAS) (1 + U co@) - G&s) U sin+] / [ 1 + U2 + 2U CO@] 

GL = [GJs) U sin@ + Gc(s) (1 + U co@)] /[ 1 + U2 + 2U cos$] 
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APPENDU( - Calculations of the coefficients of the characteristic 

equation 

The characteristic equation results as a linear combination of terms 

s”.N(s + sk) . D(s + sl), where s and s, are jw, or -jw,, n is 0 or 2, 

and N and D are the 3th and 4th order polynomials found in &,, = N/D 

(eq. 1). It is not difficult to calculate the coefficients of s”‘, by 

summing all n$d,s*s” such that k+l+n = m, and, further, to add the 

coefficients coming from all the N.D products. 

AppENDy( - Polynomial in V, 

[($&-)2]2+2(&)2[21~~+I:-I~-2*~sin2$~ + 
s z 6 z I 
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