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Abstract 

A two-dimensional computer program has been developed, 
aiming at a rapid evaluation of the eddy-current-induced mag- 
netic field in a ramped dipole magnet with a conducting beam 
tube. The program is based on a closed-form sum of the infinite 
number of mirror currents representing the additional influence 
of the iron in the poles. Various tube profiles can be put in. - 
The results of the program have been compared with calcula- 
tions using the POISSON code. The agreement is very good, 
even for beam pipes extending out near to the pole edges. 

Calculations of the temperature distribution in the walls 
of a rectangular beam-tube, cooled by a pattern of water-pipes, 
have been done, by the POISSON code also, in order to mini- 
mize the outgassing from the walls. A typical result is given. 

Calculation of magnetic effects 

Underlvina conceDts 

Assume a vast homogeneous magnetic field B, which ia 
ramped at a rate of b Tesla/sec. Perpendicular to this magnetic 
field there are two parallel conducting filaments, very long (I,;{) 
compared to their mutual distance 22. At their distant ends, 
they are connected to each other, forming a closed loop of area 
S = 2z.lf;l. The law of induction then gives the induced electric 
field strength in the filament from 

E, ‘2 ’ l,il = B ’ S = Ij ‘2~ ’ lfil 

whence E, = i3.x Volts/m. As a result, there will flow a current 
in the filaments, in opposite directions, and with a strength 
1, = E,/R, where R is in n/m. These currents will give rise 
to a secondary magnetic field, which in most practical cases 
is small compared to the driving ramped field, and given by 
Biot-Savart’s law in any point which is far from the ends of the 
filaments. 

Next step is to introduce semi-infinite ferromagnetic pole 
plates of large permeability above and below the filaments, and 
with surfaces perpendicular to the original field. The secondary 
field will then be considerably modified, and it can be shown 
that the additional induced field is identical to what would be 
obtained from two infinite sets of mirror filaments originating 
from each of the original filaments. The currents in these fictive 
filaments all have the same strength and direction as those in 
the real ones. To obtain the total field in a given point a vec- 
tor summation of the fields from all these filaments must be 
be performed. It simplifies matters considerably that a closed 
expression has been derived by Hague [I] for this mirror sum- 
mation. His formulae for one filament read (converted to the SI 
system): 
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where g is the gap height between the pole plates, and h 
the height of the filament above the bottom pole plate, 

The fundamental two-fold symmetric arrangement is ob- 
tained by introducing two pairs of filaments, such that the two 
pairs lie symmetrically with respect to the median plane of the 
pole plates. Finally, to form a real beam-tube, the (infinitely 
thin) filaments have to be substituted for thin slices of metal 
sheet adjacent to each other, each slice of width ds carrying a 
current which can be written as 

I(x) . ds = u. b. D . x . ds = A .x. ds, 

where r~ is the conductivity of the sheet and D its thickness. 
For “horizontal” parts of the beam-tube (i.e. those which are 
parallel to the poles) ds = dz, and for vertical parts ds = dy, 
while for possible sloping parts ds(z) has to be calculated from 
the shape of the tube. 

Commuter code 

A two-dimensional computer code, called GENEDDY, and 
based on the formulae of Hague, has been developed to provide 
the integration over the whole beam-tube profile of the x- and 
y-components of the induced field at an arbitrary point between 
the poles. The core of the program is dealing with only two (di- 
mensionless) variables, viz. the width of the beam tube (P), and 
the smallest spacing (ISOL) between beam tube and pole-shoe, 
both in units of the beam-tube height. The GENEDDY code 
can handle various quasi-elliptical beam-tube shapes (i.e. also 
super- and sub-ellipses with exponent # 2)) as well as rectangu- 
lar shapes (including walls of a thickness different from that of 
the floor and roof), and corner-cut rectangles. The field-point 
density in the x-direction can be chosen at will, whereas that in 
the y-direction is limited by the width of line-printer paper. 

Tests of the program 

Various features of the program have been checked against 
more or less hand-made calculations and also against calcula- 
tions performed by other computer codes. The simplest check 
wa8 done by (almost) removing the iron effect by giving a big 
value (50) to the parameter ISOL, and computing the field at 
the origin from two symmetrically placed pairs of filaments. The 
result agreed with a Biot-Savart (BS) calculation. - To check 
the summation formula of Hague in a sufficiently simple case, 
BS was applied to a single filament placed in the median plane, 
together with all its mirror currents. The evaluation involves 



the summation of the series l/(a2 + N’), where N goes from 
1 to infinity; this is achievable by Cauchy’s method of residues 

121. 
The notion of pole shoes that are semi-infinite in both the 

x- and the y-direction could in principle give rise to errors when 
applied to a real magnet. To check that, POISSON-code [3] runs 
on a configuration with four symmetrically placed filaments in 
the gap of an ordinary C-magnet were done. The agreement with 
the GENEDDY output was better than 0.2% even for filament 
positions as close as 1 cm from the edge of a gap that was 8 by 
37 cm. 

The procedure of summing the contributions from ele- 
ments of the beam tube was checked against POISSON runs, 
in which several tens of line current regions were introduced 
to simulate the tube (in GENEDDY the number of elements 
can be many hundred without undue CPU-time consumption). 
Both rectangular and elliptical tubes were calculated, both giv- 
ing better than 1% agreement. 

The idea of using the induction law combined with the 
POISSON code was adopted from Nemmie [4]:5]. Our calculated 
field shape for the DEW II beam tube is in excellent agreement 
with that of ref. [5], and for the maximal sextupole strength we 
find within 15% the same number as that which was given in 
[S], and also experimentally verified there. 

The simplifying assumtion of well-behaved return paths 
at infinity for the eddy currents should often be approximately 
valid thanks to the flanges, generally situated outside the field, 
in which the return currents can flow rather freely. 

Thermal effects 

In a machine like CRYRING [6], intended for very highly 
charged heavy ions, the vacuum requirements are at least two 
orders of magnitude stronger than in a proton or electron ring. 
All possible steps must therefore be taken to avoid unnecessary 
heating of the beam-tube during running, while the tube must 
be well isolated thermally during bake-out. For the fairly fast 
cycling envisioned in CRYRING, nearly 2 Hz, and the rather 
wide beam-tubes necessary to provide inlets for merging particle 
or laser beams, even a free-air cooled tube would attain several 
tens of degrees above ambient temperature. Also, it would be 
unduly cumbersome to mount and dismount the bake-out jack- 
ets every time the system has to be pumped down. It was thus 
decided to include cooling-water pipes in the beam-tube lay- 
out. The heat conduction to the water pipes takes place only 
laterally through the beam-tube wall, and the heat generation 
in that wall is proportional to I’/D, while the thermal con- 
ductance is proportional to D. Since I is also proportional to 
D, it follows from the heat flow equation that all temperature 
differences along the beam-tube surface are independent of the 
thickness of the tube. Provided that the eddy-current-induced 
magnetic fields can be coped with, there is then no reason to 
aim at extremely thin walls (< 1 mm). - This wss the reason to 
abandon early ideas on composite beam tubes; such tubes would 
also be difficult to join to cooling-pipes. - Since the eddy cur- 
rents increase linearly with the distance z from the tube median, 
the power density will vary aa x2. Thus, if the cooling-tubes are 
parallel to the beam, they should be placed rather far out to 
have the best efficiency. 

A sufficient mechanical rigidity of a wide rectangular beam-tube 
may be obtained by attaching transversal reinforcement bars to 
the floor and roof. Savings in mechanical complexity may be 
achieved by combining these bars with the cooling-pipes. The 
heat flow can then no longer be treated one-dimensionally, but 
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“fortunately” the POISSON code tends itself also to this type 
of calculations. The cooling pipes are then held at a fixed tem- 
perature, and the power density is discretized over the surface. 
The vertical wall should of course also be included - and can 
be, just by “straightening out the corner”. 

The vacuum in the beam-tube (in the absence of real 
leaks!) is determined by the outgassing rate of its surfaces, and 
for the high-grade stainless steel (316LN) to be used this rate 
is in turn essentially proportional to the diffusion rate for hy- 
drogen in the walls. The activation energy for diffusion in 316 
LN (15106 cal/mole) implies that the outgassing rate doubles 
for a temperature rise of 7.3”. It is evidently worth-while trying 
to avoid large temperature excesses in substantial parts of the 
beam-tube. Thus, for a given acceptable mechanical complex- 
ity, the outgassing rate should be integrated over the beam-tube 
surface, and the integral minimized by varying the positions of 
the pipes. 

Preliminary calculations show that the surface tempera- 
ture at max. cycling rate in CRYRING will nowhere exceed 27’, 
assuming a beam-tube width of 22 cm, a cooling-pipe spacing of 
6 cm at floor and roof, and two optimally placed pipes at each 
side wall (which is 6 cm high). This is valid for a cooling-water 
temperature of 12”, which is about as low as is practical with 
regard to the risk of condensation from moist air. The mean 
temperature of the dipole beam-tube will then be in the neigh- 
bourhood of 20”, i.e. the same as the main part of the beam-tube 
outside the dipole magnets. An illustration is given in Fig 1. 
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Fig. 1 Typical temperature distribution in a segment of 
a quarter of a rectangular beam-tube of total width 200 mm and 
total height 60 mm, equipped with transversal cooling-pipes at 
every 66 mm on roof and floor, and longitudinal pipes 10 mm 
from the corners of the walls (which are here shown folded up 
into the plane of the paper). Ramping rate & =I 7 T/s during 2/ 
3 of the cycle, electrical conductivity 1.3 .lO” ct-’ m-‘, thermal 
conductivity 13.5 W m- ’ “C-l. Isotherms are drawn for every 
degree Celsius. 
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