
1269

DIALOG: A SYSTEM FOR INSTRUMENTATION DIAGNOSIS

A. Bums, J. Menu
SPS Division, CERN

1211 Geneva 23
Switzerland.

The last upgrade of the SPS accelerator to become
an injector for LEP led to an even more complex
machine with the implementation of cycle to cycle
modulation (‘multicycling’) and the increased use of
microprocessors. This reinforced the need for an
automated diagnosis system for instrumentation.

The Dialog system provides the required
functionality, relying on programs residing in the
equipment to be diagnosed and others distributed over
the SPS network. The diagnosis is conducted by a
supervisor running on a personal computer that interacts
in real-time with the instrumentation equipment.

The system is able to diagnose multiple crates of the
same type at once. In case of failures, corrective actions
can be specified, including the location of spares which is
fetched from a database.

The beam instrumentation group at the SPS is
responsible for the development and maintenance of a
considerable variety of accelerator instrumentation.
Much of this equipment is in daily operational use and an
on-call repair service (‘piquet’) has to be provided 24
hours a day during periods when the accelerator is
running. All members of the group participate in this
‘piquet’ and, therefore, it is most likely that the person
called out is not the expert responsible for the equipment.
He must try to repair the equipment using documentation
provided by the specialist. This documentation includes
instructions on how to identify possible faults and what
corrective action should be taken, as well as the locations
of the equipment crates and spares.

At present, equipment diagnostics can be obtained
from:

. programs written by the expert for use
mainly in the buildings housing the
equipment (known as ‘BA’s), These
programs often contain many facilities for
the control and testing of the equipment, the
details of which may be confusing to non-
specialists;

. main control room console programs
written by the operations group or
sometimes the equipment specialist that may
display some status information or report
error conditions. These programs are not
available in the BAs;

. visual signals on the equipment itself.

The programs are written in the interpreted
language NODAL developed at CERN for accelerator
control. They are easily modified from any terminal on
the control network, but lack modularity and mix
machine specification data and the test procedures
themselves.

The introduction of multicycling at the SPS [l], in
preparation for the use of the SPS as injector for LEP,
has initiated an extensive program to upgrade the main
instrumentation systems. Multi-board microprocessor
systems using the VME or G64 backplane bus standards
and connected to the MIL-1553B multidrop bus for
communication are replacing the original, generally
non-intelligent, systems. Already the function
generators, the closed orbit acquisition system, and the
electronics for the secondary emission monitors and the
emergency beam loss detectors have been replaced; while
the ring beam monitors, beam current transformers,
television screens, wire scanners, synchrotron light
detectors and dampers will all be converted in the next l-
2 years. All the new systems will be VME systems
running 68000 family microprocessors.

This continuing conversion has made possible the
acquisition of more diagnostic information by software
and also permitted the imposition of a standard
microprocessor core software within the instrumentation
group (including multicycle handling, communication,
treatment of resident test programs). This is turn has
aided the development of a new automated diagnosis
system for instrumentation equipment according to the
following criteria:

. The system would be required to assist
initial interventions on essential equipment
by the instrumentation ‘piquet’ and, after a
trial period, by the machine operators
themselves.

. The system should be available in the
instrumentation group laboratories and
offices, in the BAs and in the main control
room.

1270

. The system could not reasonably be expected
to correctly interpret all possible faults, and
therefore the intervention of the relevant
expert may still be needed in some cases, as
at present.

-em arm

It was decided early in the project that diagnosis
should be done in a hierarchical way. The system is
composed of:

. a supervisor of the diagnosis, running on a
personal computer;

. test programs, which are either resident in
the equipment to be diagnosed, or NODAL
programs stored in a library on the SPS
control network.

The resident test programs can be written in any
language by the designer of the given equipment. They
communicate their results back to the supervisor by
means of a text page, that is stored in a file in the
supervisor’s directory and may optionally be displayed
to the user of the system.

In order for Dialog to be able to use the contents of
the text page, it must be told how to do so. This is done by
two kinds of information supplied by the designer of the
equipment:

. a page format describing the structure of the
page, in the form of grammar rules;

. a set of diagnosis rules that will tell Dialog
which values to look for in the
corresponding page, and what to do
whenever they satisfy given boolean
conditions.

Both page formats and diagnosis rules are specified
in the dedicated language Dialog [2].

An example of a page format is shown below:

page-format(sem-status 1 -->
comment_lines(2),

data-lines(
computer = ascii (51, blanks(l),
n value = decimal(31, blanks(l),
rt = decimal(2), blanks(2),
tg3-status = ascii(3L, blanks(4),
ml553-interface = ascii(3), blanks(4),
asynchr-acquisition = aSCii(3), blanks(3),
acquisition-mode = ascii(6), blanks(41,
timing-interface = ascii(31, blanks(S),
supercycle-number = decimal(5), blanks(Q),
first-acquisition = decimal(S), blanks(4),
second-acquisition = decimal(5)
1 *

A sample diagnosis rule on this text page is:

diagnosis-rule(sem-status 1 -->
if whatever-data-line timing-interface = 'BAD' then

external-failure('No timing in all crates',
1 in this sub-system', nl,
I-- check Master Timing Generator’)

elsif exists-data-line timing-interface= 'BAD' then
component-failure(timing-interface, 'NO',

1 timing being received', nl,
I-- check distribution or change',
I interface card')

For the purposes of diagnosis, each system is viewed
as a set of so-called objects, that can be hardware as well
as software components of the equipment. Test programs
are supplied by the designer of the equipment for most of
these objects together with the Dialog page formats and
diagnosis rules for them.

Each test program tests only the object it has been
designed for: there are no means in Dialog to test several
objects at once. However a test program may well lead to
another object being suspected, as in:

diagnosis-rule{ sem-status) -->
if exists-data-line ml553-interface = 'BAD' then

suspect ml553
endif.

The system can be used via a direct RS232
connection to the equipment crate or via the SPS control
network. In the latter case, a standard prologue is first
launched to help select the subset of crates to be
diagnosed.

. . 2 me-
The key point for a specification language to meet

its promises is safety. In the case of Dialog, we cannot
afford to let people write down anything without full
checking: in particular, page formats and diagnosis rules
are useless if they cannot be guaranteed consistent.

The implementation is thus organized as follows:

. the compiler reads Dialog source
specifications from files, performing
extensive checks on it, and produces so-
called compiled code onto other files;

. the interpreter loads that compiled code and
executes it to conduct the diagnosis;

. since some objects can be components of
more than one type of equipment, the files
describing them are compiled separately,
providing modularity. Such a file is
recognized by the compiler as starting by a
‘test-programs’ specification;

1271

been written in Prolog; the communication primitives
have been written in Pascal and added to Prolog as
predefined predicates. This version is entirely adequate
for the development of diagnostic programs by the
equipment designer, but, being a development
environment, is not really suitable for use by the
occasional user (i.e. ‘piquet’ or operation crew).

Current work is therefore going on to provide an
autonomous Macintosh application that can be run
without the Prolog development system.

. when a file describing an equipment is
compiled, the compiled code for its
component objects is automatically loaded
and linked together with the compiled code
for the given equipment. An equipment file
is distinguished as starting by a ‘components’
specification, and the next element in it
should be an ‘investigate’ element. Different
load modules are generated for local or
remote use (includes crate selection
prologue if remote)

First, the personal computer, a Macintosh, is
connected by the serial line directly to the crate (local
mode) or logged in to NODAL on a NORD-100 on the
control network (remote mode) Then, the appropriate
local or remote executable file is loaded into Dialog and
run.

In the case of remote mode, interaction with a
special equipment data-base allows the selection of a
particular sub-set of crates to be diagnosed. The initial
status program specified in the Dialog file will then be
run on the chosen crates, and then, depending on the
status page received, test programs may be run in
individual crates.

In local mode, a resident status program will run in
the local crate, which in turn may trigger other test
programs, as in the remote case.

By default, a minimum of information is displayed
to the user and the diagnosis proceeds automatically,
informing the user of its progress by messages about
which test programs are launched and possible failures it
finds.

If Dialog finds a failure in some equipment, it will
display the corrective action to be taken, and in remote
mode will interrogate a spares data-base to display
information OJI the location of the equipment crate and
the nearest spares.

A verbose mode may also be selected, in which all
text pages are displayed as they are received, and in
which it is possible to launch manually test programs
known to the the system but not yet run. This mode is
useful during development.

5. Current s&&s and r>erSgstctives

Although the Macintosh can be used in the main
control room while the present NORD-100 computers
remain, the decision has been taken to port the Dialog
system to the Apollo workstations, which will gradually
replace the existing NORD-100 consoles. The proposal
to provide a general purpose Apollo also in each BA will
then allow running the same diagnostic system locally
without transporting the Macintosh and using the RS-232
connection to the crate.

Currently, Dialog files exist only for the closed
orbit and secondary emission monitor acquisition
systems and they do not yet take into account all the
possible diagnostics available from the equipment. Work
to provide diagnostic programs for the other
microprocessor-based instrumentation systems will start
when the current level of pressure to provide new and
improved instruments eases off.

It is with pleasure that the authors acknowledge the
contributions of L. Bumod and E. D’Amico in the early
stages of the project.

[l] G. Beetham, L. Burnod, R. Lauckner,
J. Miles, G. Mugnai, C. Saltmarsh,
D. Thomas, “Conversion of the SPS to a
Multicycling Accelerator”, presented at this
conference.

[2] A. Burns, E. D’Amico, J. Menu,
“DIALOG: A Language for Instrumentation
Diagnosis”, presented at the JoumCes sur les
applications de l’TA en Physique des Particules,
CPPM, Marseille, June 15-17, 1987.

A prototype Dialog system has been implemented
on a Macintosh, which satisfies the requirement for a fast
portable machine. The compiler and interpreter have

